Yıl: 2023 Cilt: 89 Sayı: 170 Sayfa Aralığı: 23 - 40 Metin Dili: İngilizce İndeks Tarihi: 03-08-2023

Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021

Öz:
Uncontrolled energy consumption by human beings, such as the increase in the demand for the gases used for heating purposes in houses, the rise in the number of industrial production facilities, and the uncontrollable levels of the gases emitted from the exhausts of motor vehicles, are among the causes that trigger chemical gas formation in the atmosphere. Increases in air pollution threaten people's health and disrupt ecological balances. For this reason, regularly monitoring the amount of pollution and taking the necessary precautions is crucial. In this study, which was conducted for this reason, the state of polluting gases between 2019-2021 in the province of Konya was examined using remote sensing data. The data were obtained from the TROPOMI instrument attached to the Sentinel-5 Precursor (S5P) satellite launched into orbit by the European Space Agency (ESA). Various atmospheric gases (ozone, methane, carbon monoxide, nitrogen dioxide, sulfur dioxide, and formaldehyde) can be detected by the sensors in this device. For this purpose, S5P Level-2 data was accessed via the Google Earth Engine (GEE) platform, and different codes were written to obtain each data. Then, the data collection for the study region was completed. The monthly amount of carbon monoxide, ozone, methane, and nitrogen dioxide gases for the study area between the specified dates are shown in the graphs, and maps are produced for each year. As a result, it has been determined that methane gas is not observed in extensive wetlands and forest areas, and the minimum values of NO2, O3, and CO gases are in the summer months and CH4 gas in the winter months. It has also been determined that the region between the west and the south of the city center is the healthiest region in terms of air pollutant gases.
Anahtar Kelime: Google Earth Engine Konya Air Quality Pollutant Gases Sentinel-5P TROPOMI Satellite

2019-2021 Yılları Arası Konya İli Sentinel-5P Verilerinin Mekâna-Zamana Dayalı Analizi

Öz:
Konutlarda ısınma amaçlı kullanılan gazlara olan talebin artması, endüstriyel üretim tesislerinin sayısının artması, motorlu taşıtların egzozlarından çıkan gazların kontrol edilemeyen seviyelere ulaşması gibi insanoğlunun kontrolsüz enerji tüketimi, atmosferde kimyasal gaz oluşumunu tetikleyen nedenler arasındadır. Hava kirliliğindeki artışlar insan sağlığını tehdit etmekte ve çevresel yaşam dengelerini bozmaktadır. Bu nedenle kirlilik miktarının düzenli olarak izlenmesi ve gerekli önlemlerin alınması gerekmektedir. Bu amaçla gerçekleştirilen bu çalışmada, uzaktan algılama verileri kullanılarak Konya ilinde 2019-2021 yılları arasındaki kirletici gazların durumu incelenmiştir. Veriler, Avrupa Uzay Ajansı (ESA) tarafından yörüngeye fırlatılan Sentinel-5 Precursor (S5P) uydusuna bağlı TROPOMI algılayıcısından elde edilmiştir. Bu algılayıcıdaki sensörler tarafından çeşitli atmosferik gazlara (ozon, metan, karbon monoksit, nitrojen dioksit, kükürt dioksit ve formaldehit) ait zamansal değişim belirlenebilir. Bu amaçla Google Earth Engine (GEE) platformu ile S5P Düzey-2 verilerine ulaşılmış ve her bir veriyi elde etmek için farklı kodlar yazılmıştır. Daha sonra çalışma bölgesi için veri elde etme işlemi tamamlanmıştır. Çalışma alanı için belirlenen tarihler arasındaki aylık karbon monoksit, ozon, amonyak ve nitrojen dioksit gazları miktarları grafiklerde gösterilmiş ve her yıl için haritalar üretilmiştir. Sonuç olarak geniş sulak alanlarda ve ormanlık alanlarda metan gazının görülmediği, NO2, O3 ve CO gazlarının minimum değerlerinin yaz aylarında, CH4 gazının ise kış aylarında olduğu tespit edilmiştir. İl merkezinin batısı ile güneyi arasında kalan bölgenin havayı kirletici gazlar açısından en sağlıklı bölge olduğu da belirlendi.
Anahtar Kelime: Google Earth Engine Kirletici Gazlar Konya Hava Kalitesi Sentinel-5P TROPOMI uydusu

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Bibliyografik
  • Adhikari, A., & Yin, J. (2020). Short-term effects of ambient ozone, PM2. 5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. International Journal of Environmental Research and Public Health, 17(11), 4047. doi:https://doi.org/10.3390/ijerph17114047
  • Arikan, D., & Yildiz, F. (2023). Investigation of Antalya forest fire's impact on air quality by satellite images using Google earth engine. Remote Sensing Applications: Society and Environment, 100922. doi:https://doi.org/10.1016/j.rsase.2023.10092 2
  • Arıkan, D., & Yıldız, F. (2021, Mayıs). An Analysis of NO2 Emission During COVID-19 Period in Turkey. 11. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB) Teknik Sempozyumu, 6-9, Mersin, Türkiye.
  • Arıkan, D., & Yıldız, F. (2022,Ekim). Landsat-8 Uydusu Kullanılarak 2018-2021 Yılları Arasında İstanbul'daki Kentsel Isı Adasının İncelenmesi. 362-372, İzmir, Türkiye.
  • Balmes, J. R. (2019). Household air pollution from domestic combustion of solid fuels and health. Journal of Allergy and Clinical Immunology, 143(6), 1979-1987. doi:https://doi.org/10.1016/j.jaci.2019.04.016
  • Cheung, C. W., He, G., & Pan, Y. (2020). Mitigating the air pollution effect? The remarkable decline in the pollution-mortality relationship in Hong Kong. Journal of Environmental Economics and Management, 101, 102316. doi:https://doi.org/10.1016/j.jeem.2020.10231 6
  • Dentener, F., Emberson, L., Galmarini, S., Cappelli, G., Irimescu, A., Mihailescu, D., van den Berg, M. (2020). Lower air pollution during COVID-19 lock-down: improving models and methods estimating ozone impacts on crops. Philosophical Transactions of the Royal Society A, 378(2183), 20200188. doi:https://doi.org/10.1098/rsta.2020.0188
  • Farahat, A. (2022). The Impact of the 2020 Oil Production Fluctuations on Methane Emissions over the Gulf Cooperation Council (GCC) Countries: A Satellite Approach. Atmosphere, 13(1), 11. doi:https://doi.org/10.3390/atmos13010011
  • Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio- temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599.
  • Ghasempour, F., Sekertekin, A., & Kutoglu, H. (2021). Effect of first wave COVID-19 outbreak lockdown measures on satellite-based tropospheric NO2 over Mersin Province, Turkey. Intercontinental Geoinformation Days, 2, 16-19.
  • Ghahremanloo, M., Lops, Y., Choi, Y., & Mousavinezhad, S. (2021). Impact of the COVID-19 outbreak on air pollution levels in East Asia. Science of the Total Environment, 754, 142226. doi:https://doi.org/10.1016/j.scitotenv.2020.14 2226
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi:https://doi.org/10.1016/j.rse.2017.06.031
  • Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., . . . Fioletov, V. (2019). High resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. Geophysical Research Letters, 46(2), 1049- 1060. doi: https://doi.org/10.1029/2018GL081095
  • Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio- temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599. doi: https://doi.org/10.1016/j.jclepro.2021.128599
  • Hashim, B. M., Al-Naseri, S. K., Al-Maliki, A., & Al- Ansari, N. (2021). Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of the Total Environment, 754, 141978. doi:https://doi.org/10.1016/j.scitotenv.2020.14 1978
  • Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., . . . Hasekamp, O. (2018). Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophysical Research Letters, 45(8), 3682-3689. doi: https://doi.org/10.1002/2018GL077259
  • Ialongo, I., Virta, H., Eskes, H., Hovila, J., & Douros, J. (2020). Comparison of TROPOMI/Sentinel-5 Precursor NO 2 observations with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 13(1), 205-218. doi:https://doi.org/10.5194/amt-13-205-2020
  • Ibbetson, A., Symonds, P., & Hutchinson, E. (2020). Data to support small area health impact modelling of air pollution in the United Kingdom. Data in brief, 29, 105148. doi:https://doi.org/10.1016/j.dib.2020.105148
  • Kaplan, G., Avdan, Z. Y., & Avdan, U. (2019). Spaceborne nitrogen dioxide observations from the sentinel-5P TROPOMI over Turkey. Multidisciplinary digital publishing institute proceedings, 18(1), 4. doi:https://doi.org/10.3390/ECRS-3-06181
  • Kunt, F., & Dursun, Ş. (2016). Air pollution modelling of Konya City center by using artificial intelligence methods. Wulfenia Journal, 23(11), 76-87.
  • Kurata, M., Takahashi, K., & Hibiki, A. (2020). Gender differences in associations of household and ambient air pollution with child health: evidence from household and satellite- based data in Bangladesh. World Development, 128, 104779. doi:https://doi.org/10.1016/j.worlddev.2019.10 4779
  • Li, C., Chen, W., Wang, Y., Wang, Y., Ma, C., Li, Y., Zhai, W. (2022). Mapping winter wheat with optical and SAR images based on Google earth engine in Henan Province, China. Remote Sensing, 14(2), 284. doi:https://doi.org/10.3390/rs14020284
  • Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., Schneider, A., Wu, L., . . . Pollard, D. F. (2021). Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmospheric Measurement Techniques, 14(1), 665-684. doi:https://doi.org/10.5194/amt-14- 665-2021
  • Lu, M., Schmitz, O., Vaartjes, I., & Karssenberg, D. (2019). Activity-based air pollution exposure assessment: differences between homemakers and cycling commuters. Health & place, 60, 102233. doi:https://doi.org/10.1016/j.healthplace.2019. 102233
  • Makineci, H. B. (2022). İstanbul İli Merkez İlçelerindeki NO2 ve CO Emisyonlarının Uzaktan Algılama ve Yersel İstasyon Verileri Kullanılarak İncelenmesi. Türkiye Uzaktan Algılama Dergisi, 4(2), 62-74. https://doi.org/10.51489/tuzal.1160333
  • Rohi, G., & Ofualagba, G. (2020). Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon, 6(1), e03252. doi:https://doi.org/10.1016/j.heliyon.2020.e032 52
  • Safarianzengir, V., Sobhani, B., Yazdani, M. H., & Kianian, M. (2020). Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran, located in the Middle East. Air Quality, Atmosphere & Health, 13, 709-719. doi:https://doi.org/10.1007/s11869-020- 00827-5
  • Sager, L. (2019). Estimating the effect of air pollution on road safety using atmospheric temperature inversions. Journal of Environmental Economics and Management, 98, 102250. doi:https://doi.org/10.1016/j.jeem.2019.10225 0
  • Singh, S., Singh, H., Sharma, V., Shrivastava, V., Kumar, P., Kanga, S., . . . Singh, S. K. (2021). Impact of forest fires on air quality in Wolgan Valley, New South Wales, Australia—a mapping and monitoring study using Google Earth engine. Forests, 13(1), 4. doi:https://doi.org/10.3390/f13010004
  • Slagter, B., Tsendbazar, N.-E., Vollrath, A., & Reiche, J. (2020). Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 86, 102009. doi:https://doi.org/10.1016/j.jag.2019.102009
  • Sobhani, B., & Zengir, V. S. (2019). Investigation hazard effect of monthly ferrrin temperature on agricultural products in north bar of Iran. The Iraqi Journal of Agricultural Science, 50(1), 320-330. doi:https://doi.org/10.36103/ijas.v50i1.298
  • Sobhani, B., & Zengir, V. S. (2020). Modeling, monitoring and forecasting of drought in south and southwestern Iran, Iran. Modeling Earth Systems and Environment, 6, 63-71. doi:https://doi.org/10.1007/s40808-019- 00655-2
  • Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge university press.
  • Stratoulias, D., & Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of the Total Environment, 746, 141320. doi:https://doi.org/10.1016/j.scitotenv.2020.14 1320
  • Theys, N., De Smedt, I., Yu, H., Danckaert, T., van Gent, J., Hörmann, C., . . . Romahn, F. (2017). Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis. Atmospheric Measurement Techniques, 10(1), 119-153. doi:https://doi.org/10.5194/amt-10-119-2017
  • Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., . . . Kleipool, Q. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120, 70-83. doi:https://doi.org/10.1016/j.rse.2011.09.027
  • Wang, H., Gong, F.-Y., Newman, S., & Zeng, Z.- C. (2022). Consistent weekly cycles of atmospheric NO2, CO, and CO2 in a North American megacity from ground-based, mountaintop, and satellite measurements. Atmospheric Environment, 268, 118809. doi:https://doi.org/10.1016/j.atmosenv.2021.1 18809
APA Makineci H, Arıkan D, Alkan D, Karasaka L (2023). Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. , 23 - 40.
Chicago Makineci Hasan Bilgehan,Arıkan Duygu,Alkan Damlanur,Karasaka Lutfiye Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. (2023): 23 - 40.
MLA Makineci Hasan Bilgehan,Arıkan Duygu,Alkan Damlanur,Karasaka Lutfiye Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. , 2023, ss.23 - 40.
AMA Makineci H,Arıkan D,Alkan D,Karasaka L Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. . 2023; 23 - 40.
Vancouver Makineci H,Arıkan D,Alkan D,Karasaka L Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. . 2023; 23 - 40.
IEEE Makineci H,Arıkan D,Alkan D,Karasaka L "Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021." , ss.23 - 40, 2023.
ISNAD Makineci, Hasan Bilgehan vd. "Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021". (2023), 23-40.
APA Makineci H, Arıkan D, Alkan D, Karasaka L (2023). Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. Harita Dergisi, 89(170), 23 - 40.
Chicago Makineci Hasan Bilgehan,Arıkan Duygu,Alkan Damlanur,Karasaka Lutfiye Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. Harita Dergisi 89, no.170 (2023): 23 - 40.
MLA Makineci Hasan Bilgehan,Arıkan Duygu,Alkan Damlanur,Karasaka Lutfiye Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. Harita Dergisi, vol.89, no.170, 2023, ss.23 - 40.
AMA Makineci H,Arıkan D,Alkan D,Karasaka L Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. Harita Dergisi. 2023; 89(170): 23 - 40.
Vancouver Makineci H,Arıkan D,Alkan D,Karasaka L Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021. Harita Dergisi. 2023; 89(170): 23 - 40.
IEEE Makineci H,Arıkan D,Alkan D,Karasaka L "Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021." Harita Dergisi, 89, ss.23 - 40, 2023.
ISNAD Makineci, Hasan Bilgehan vd. "Spatio-temporal Analysis of Sentinel-5P Data of Konya City Between 2019-2021". Harita Dergisi 89/170 (2023), 23-40.