Yıl: 2023 Cilt: 6 Sayı: 3 Sayfa Aralığı: 229 - 234 Metin Dili: Türkçe DOI: 10.34248/bsengineering.1255266 İndeks Tarihi: 14-08-2023

Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar

Öz:
Bu çalışmada, sıcak pres yöntemi ile üretilmiş CETP (Cam elyaf takviyeli polimerler) kompozit panellerin eğilme performansları araştırılmıştır. Bu amaçla cam elyaf ve reçine ile hazırlanmış kompozit plakalar belli bir sıcaklık ve basınç altında preslenerek panellere çevrilmiştir. Üretilen paneller değişken yükler altında çalışan malzemeler olması nedeni ile eğilme testine tabi tutulmuştur. Panellerden 14×150×6 mm3 ebatlarında numuneler alınarak üç nokta eğilme testi uygulamıştır. Deneyin doğrulanması ve gerilme dağılımının görsel olarak incelenebilmesi amacıyla sonlu elemanlar analizi (SEA) yapılmıştır. Çalışma sonunda deneysel ve teorik sonuçlar karşılaştırılmış ve uygulanan yüklerin etkileri tartışılmıştır. Deneylerde en yüksek eğilme gerilmesi 150.39 MPa, SE analizinde ise 164.31 MPa şeklinde gerçekleşmiştir. Malzemenin hasar öncesi deplasmanı deney ve SEA için sırasıyla 4.92 mm ve 5.46 mm’dir. Deney ve SEA sonuçlarının birbirine yakın sonuçlar verdiği görülmüştür. Elde edilen sonuçlar CETP kompozit malzemelerin farklı alanlarda kullanımı öncesi boyut ve mekanik özelliklerin belirlenmesi çalışmalarına destek olacak niteliktedir.
Anahtar Kelime: CETP Eğilme testi Kompozit Sıcak pres Sonlu elemanlar analizi

Experimental and Theoretical Studies on Bending Performance of Hot Press GFRP Composite Panels

Öz:
In this study, the bending performances of GFRP (glass fiber reinforced plastic) composite panels produced by the hot press method were investigated. For this purpose, composite plates prepared with glass fiber and resin were pressed under a certain temperature and pressure and turned into panels. The panels produced were subjected to bending test since they are materials that operate under variable loads. Three-point bending test was applied by taking samples of 14x150x6 mm3 size from the panels. Finite element analysis (FEA) was performed to verify the experiment and to visually examine the stress distribution. At the end of the study, experimental and theoretical results were compared, and the effects of applied loads were discussed. The highest bending stress was 150.39 MPa in the experiments, and 164.31 MPa in the SE analysis. The displacement of the material before damage is 4.92 mm and 5.46 mm for the test and FEA, respectively. It was observed that the results of the experiment and FEA gave close results. The results obtained will support the studies of determining the size and mechanical properties of GFRP composite materials before their use in different areas.
Anahtar Kelime: GFRP Bending test Composite Hot press Finite element analysis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Asaee Z, Montesano J, Worswick M. 2021. Assessing the failure mechanisms and mechanical performance of Co-moulded hybrid AA5182-O/GFRP hat-channel beams under quasi-static three-point bending. Composite Struct, 256: 113007.
  • Bazli M, Ashrafi H, Jafari A, Zhao XL, Gholipour H, Oskouei AV. 2019. Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures. Composites Part B: Engin, 157: 76-99.
  • Bian L, Xiao J, Zeng J, Xing S. 2012. Effects of seawater immersion on water absorption and mechanical properties of GFRP composites. J Composite Mater, 4625: 3151-3162.
  • Biddah A. 2006. Structural reinforcement of bridge decks using pultruded GFRP grating. Composite Struct, 74(1): 80-88.
  • Carbajal N, Mujika F. 2009. Determination of longitudinal compressive strength of long fiber composites by three-point bending of [0m/90n/0p] cross-ply laminated strips. Polymer Test, 28(6): 618-626.
  • Carvelli V, Panzeri N, Poggi C. 2001. Buckling strength of GFRP under-water vehicles. Composites Part B: Engin, 322: 89-101.
  • Demircan G, Mustafa Ö, Murat K. 2020. Flexural properties of glass fiber reinforced epoxy composites at different strain rates. Dokuz Eylül Üniv, Müh Fak Fen Müh Derg, 22(64): 271-276.
  • Ferdous W, Bai Y, Almutairi AD, Satasivam S, Jeske J. 2018. Modular assembly of water-retaining walls using GFRP hollow profiles: Components and connection performance. Composite Struct, 194: 1-11.
  • Kharghani N, Soares CG, Tsouvalis NG. 2019. Experimental and numerical study of the bolt reinforcement of a composite-to-steel butt-joint under three-point bending test. Marine Struct, 63: 384-403.
  • Kilickap E. 2010. Investigation into the effect of drilling parameters on delamination in drilling GFRP. J Reinforced Plast Composit, 2923: 3498-3503.
  • Kılıçkap E, Yenigün B, Çelik YH. 2017. The effect of drilling parameters on strength of glass fibre-epoxy laminates by produced hand lay-up. Engineering Sciences 12(4): 246-254.
  • Kilickap E, Çelik YH, Yenigun B. 2023. Experimental evaluation of parameters affecting delamination factor tensile strength thrust force and surface roughness in drilling of GFRP. Surface Rev Letters, 30(4): 2350025.
  • Li H, Wang H, Xiang J, Li Z, Chen X, Tao J. 2022. Evolution behaviors and reduction mechanism of curing residual stresses in GLARE laminates under a hot-pressing condition. Polymers, 14(10): 1982.
  • Liao K, Schultheisz CR, Hunston DL. 1999. Effects of environmental aging on the properties of pultruded GFRP. Composites Part B: Engin, 30(5): 485-493.
  • Madenci E, Özkılıç Y. O, Gemi L. 2020. Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses. Composite Struct, 242 112162.
  • Nishizaki I, Meiarashi S. 2002. Long-term deterioration of GFRP in water and moist environment. J Composites Construct, 6(1): 21-27.
  • Özkılıç YO, Madenci E, Lokman G. 2020. Tensile and compressive behaviors of the pultruded GFRP lamina. Turkish J Engin, 4(4): 169-175.
  • Pyrzowski Ł, Sobczyk B. 2020. Local and global response of sandwich beams made of GFRP facings and PET foam core in three point bending test. Composite Struct, 241 112122.
  • Sá MF, Gomes A. M, Correia JR, Silvestre N. 2011. Creep behavior of pultruded GFRP elements–Part 1: Literature review and experimental study. Composite Struct, 93(10): 2450-2459.
  • Sanada K, Shindo Y. 2006. Notched three point bend testing of gfrp woven laminates at cryogenic temperatures and analysis of fracture and damage properties. American Institut Phys, 824(1): 264-271.
  • Sateesh N, Rao PS, Ravishanker DV, Satyanarayana K. 2015. Effect of moisture on GFRP composite materials. Mater Today Proceed, 2(4-5): 2902-2908.
  • Seifoori S, Mirzaei M, Afjoland H. 2020. Experimental and FE analysis for accurate measurement of deflection in CFRP and GFRP laminates under bending. Measurement, 153: 107445.
  • Subaşı S, Çetin V, Şamandar A. 2017. Kompozit panellerde ctp levha ve çekirdek kalınlığının mekanik özelliklere etkisi. El-Cezeri, 42: 135-145.
  • Tekin A, Esendemir Ü, Öndürücü A. 2016. Farklı ortam koşullarına maruz bırakılan kompozit malzemenin eğilme davranışlarının deneysel ve teorik olarak incelenmesi. Soma MYO Tek Bil Derg, 121: 27-37.
  • Valenza A, Fiore V, Calabrese L. 2010. Three-point flexural behaviour of GFRP sandwich composites: A failure map. Advanced Composite Mater, 19(1): 79-90.
APA Bahçe E, ÖZDEMİR B, Önal T (2023). Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. , 229 - 234. 10.34248/bsengineering.1255266
Chicago Bahçe Erkan,ÖZDEMİR BURAK,Önal Tuğberk Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. (2023): 229 - 234. 10.34248/bsengineering.1255266
MLA Bahçe Erkan,ÖZDEMİR BURAK,Önal Tuğberk Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. , 2023, ss.229 - 234. 10.34248/bsengineering.1255266
AMA Bahçe E,ÖZDEMİR B,Önal T Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. . 2023; 229 - 234. 10.34248/bsengineering.1255266
Vancouver Bahçe E,ÖZDEMİR B,Önal T Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. . 2023; 229 - 234. 10.34248/bsengineering.1255266
IEEE Bahçe E,ÖZDEMİR B,Önal T "Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar." , ss.229 - 234, 2023. 10.34248/bsengineering.1255266
ISNAD Bahçe, Erkan vd. "Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar". (2023), 229-234. https://doi.org/10.34248/bsengineering.1255266
APA Bahçe E, ÖZDEMİR B, Önal T (2023). Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science, 6(3), 229 - 234. 10.34248/bsengineering.1255266
Chicago Bahçe Erkan,ÖZDEMİR BURAK,Önal Tuğberk Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science 6, no.3 (2023): 229 - 234. 10.34248/bsengineering.1255266
MLA Bahçe Erkan,ÖZDEMİR BURAK,Önal Tuğberk Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science, vol.6, no.3, 2023, ss.229 - 234. 10.34248/bsengineering.1255266
AMA Bahçe E,ÖZDEMİR B,Önal T Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science. 2023; 6(3): 229 - 234. 10.34248/bsengineering.1255266
Vancouver Bahçe E,ÖZDEMİR B,Önal T Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science. 2023; 6(3): 229 - 234. 10.34248/bsengineering.1255266
IEEE Bahçe E,ÖZDEMİR B,Önal T "Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar." Black Sea Journal of Engineering and Science, 6, ss.229 - 234, 2023. 10.34248/bsengineering.1255266
ISNAD Bahçe, Erkan vd. "Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar". Black Sea Journal of Engineering and Science 6/3 (2023), 229-234. https://doi.org/10.34248/bsengineering.1255266