Yıl: 2023 Cilt: 53 Sayı: 4 Sayfa Aralığı: 872 - 882 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5651 İndeks Tarihi: 31-08-2023

In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies

Öz:
Background/aim: Methotrexate (MTX) is a folic acid antagonist that is widely used to treat osteosarcoma, leukemia, breast cancer, and autoimmune and inflammatory diseases. The most important concerns with MTX are its poor solubility and high toxicity, particularly in liver cells. To enhance its solubility and to minimize its toxicity, we encapsulated MTX in niosomes and investigated its hepatotoxicity mechanisms using genetic biomarkers. Materials and methods: Niosomes were successfully prepared using a modified thin film method, and the prepared monodisperse small- sized formulation was subsequently characterized. In vitro cytotoxicity studies were performed both in hepatocarcinoma (HEP3G) and healthy liver (AML12) cell lines. Specifically, immunofluorescence assay and evaluation of the expression levels of apoptotic, antioxidant, heat shock protein, and oxidative stress genes were performed. Results: The formulation had a particle size of 117.1 ± 33 nm, a surface charge of −38.41 ± 0.7 mV, and an encapsulation efficiency of 59.7% ± 2.3%. The results showed that the niosomal formulation exhibited significantly higher cytotoxic effects in HEP3G than in AML12. The immunofluorescence and genetic analyses showed that the increased cytotoxicity of niosomes resulted mainly from oxidative stress and slight apoptosis. Conclusion: These results demonstrated that niosomal drug delivery systems could be a new potential formulation for minimizing MTX-related hepatotoxicity.
Anahtar Kelime: Methotrexate niosomes hepatotoxicity oxidative stress apoptosis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Levêque L, Paillard GB, Toussaint E, Fornecker, Catherine LM. Clinical pharmacokinetics of methotrexate in oncology. International Journal of Pharmacokinetics 2017; 2 (2): 137-147. https://doi.org/10.4155/ipk-2016-0022
  • 2. Jang J, Jeong S, Lee Y. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. International Journal of Molecular Sciences 2019; 20 (13): 3312. https://doi. org/10.3390/ijms20133312
  • 3. Khan ZA, Tripathi R, Mishra B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opinion Drug Delivery 2012; 9 (2): 151-69. https://doi.org/10.1517/1742524 7.2012.642362
  • 4. Teresi ME, Crom WR, Choi KE, Mirro J, Evans WE. Methotrexate bioavailability after oral and intramuscular administration in children. The Journal of Pediatrics 1987; 110 (5): 788-792. https://doi.org/10.1016/S0022-3476(87)80025-2
  • 5. Kumari S. Methotrexate induced hepatotoxicity and its management. International Journal of Science and Research 2016; 5 (9): 1477-1481.
  • 6. Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C et al. Methotrexate an old drug with new tricks. International Journal of Molecular Sciences 2019; 20 (20): 5023. https://doi. org/10.3390/ijms20205023
  • 7. Bath RB, Brar NK, Forouhar FA, Wu GY. A Review of Methotrexate- associated Hepatotoxicity. Journal of Digestive Diseases 2014; 15 (10): 517-524. https://doi.org/10.1111/1751-2980.12184
  • 8. Demirbolat GM, Aktas E, Coskun GP, Erdogan O, Cevik O. New approach to formulate methotrexate-loaded niosomes: in vitro characterization and cellular effectiveness. Journal of Pharmaceutical Innovation 2022; 17: 622-637. https://doi. org/10.1007/s12247-021-09539-4
  • 9. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of Pharmaceutical Sciences 2010; 99 (4): 2049-2060. https://doi.org/10.1002/jps.21944
  • 10. Kaszuba M, Corbett J, Watson FM, Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions A 2010; 368 (1927): 4439-4451. https://doi.org/10.1098/rsta.2010.0175
  • 11. ErginAD,SezginBayindirZ,OzcelikayAT,YukselN.Anoveldelivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation. Journal of Drug Delivery Science and Technology, 2021; 61: 102096. https://doi.org/10.1016/j.jddst.2020.102096
  • 12. Türker NP, Bağcı U, Onsekizoglu Bagci P. Investigation of the anticancer and proliferative effect of broccoli extract on Du145 prostate cancer and MEF healthy fibroblast cell lines. International Journal of Innovative Approaches in Agricultural Research 2019; 3 (4): 550-556. https://doi.org/10.29329/ijiaar.2019.217.1
  • 13. Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One 2019; 14 (6): e0216496. https://doi.org/10.1371/journal.pone.0216496
  • 14. Shaker DS, Shaker MA, Hanafy MS. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. International Journal of Pharmaceutics 2015; 493 (1- 2): 285-294. https://doi.org/10.1016/j.ijpharm.2015.07.041
  • 15. Kassem MA, El-Sawy HS, Abd-Allah FI, Abdelghany TM, El-Say KM. Maximizing the therapeutic efficacy of imatinib mesylate- loaded niosomes on human colon adenocarcinoma using box- behnken design. Journal of Pharmaceutical Sciences 2017; 106 (1): 111-122. https://doi.org/10.1016/j.xphs.2016.07.007
  • 16. Meszaros M, Porkolab G, Kiss L, Pilbat AM, Kota Z et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. European Journal of Pharmaceutical Sciences 2018; 123: 228-240. https://doi.org/10.1016/j. ejps.2018.07.042
  • 17. Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta 2009; 1788 (4): 892- 910. https://doi.org/10.1016/j.bbamem.2008.09.016
  • 18. Kaur P, Garg T, Rath G, Murthy RS, Goyal AK. Surfactant- based drug delivery systems for treating drug-resistant lung cancer. Drug Delivery 2016; 23 (3): 727-738. https://doi.org/10. 3109/10717544.2014.935530
  • 19. Al-Mahallawi AM, Fares AR, Abd-Elsalam WH. Enhanced permeation of methotrexate via loading into ultra-permeable niosomal vesicles: fabrication, statistical optimization, ex vivo studies, and in vivo skin deposition and tolerability. AAPS PharmSciTech 2019; 20: 171. https://doi.org/10.1208/s12249- 019-1380-5
  • 20. Shaikh K, Pawar A, Aphale E, Moghe A. Effect of vesicular encapsulation on in-vitro cytotoxicity of ciclopirox olamine. International Journal of Drug Delivery 2012; 4: 139-146.
  • 21. Nowroozi F, Almasi A, Javidi J, Haeri A, Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian Journal of Pharmaceutical Research 2018; 17 (2): 1-11.
  • 22. Zidan AS, Ibrahim MM, El Megrab NA. Optimization of methotrexate loaded niosomes by box behnken design: an understanding of solvent effect and formulation variability. Drug Development and Industrial Pharmacy 2017; 43 (9): 1450-1459. https://doi.org/10.1080/03639045.2017.1318907
  • 23. Sezgin-Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech 2014; 16 (1): 108-117. https://doi. org/10.1208/s12249-014-0213-9
  • 24. Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Digest Journal of Nanomaterials and Biostructures 2014; 9 (1): 83-89.
  • 25. Anton Paar GmbH. Instruction Manual Litesizer™ 500 light- scattering instrument for particle analysis. 2016; https:// arcscientific.com/wp-content/uploads/2018/07/Anton-Paar- Lite-Sizer-500-Particle-Analyzer-Manual.pdf (accessed 21 October 2020)
  • 26. Agarwal S, Mohamed MS, Raveendran S, Rochani AK, Maekawa T et al. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Advances 2018; 8 (57): 32621-32636. https://doi. org/10.1039/C8RA06362A
  • 27. Muzzalupo R, Tavano L, La Mesa C. Alkyl glucopyranoside- based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. International Journal of Pharmaceutics 2013; 458: 224-229. https://doi.org/10.1016/j.ijpharm.2013.09.011
  • 28. Yiang GT, Chou PL, Hung YT, Chen JN, Chang WJ et al. Vitamin C enhances anticancer activity in methotrexate-treated Hep3B hepatocellular carcinoma cells. Oncology reports 2014; 32 (3): 1057-1063. https://doi.org/10.3892/or.2014.3289
  • 29. Abo-Haded HM, Elkablawy MA, Al-Johani Z, Al-Ahmadi O, El-Agamy DS. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One 2017; 12 (3): e0174295. https://doi.org/10.1371/journal.pone.0174295
  • 30. AlBasher G, AlKahtane AA, Alarifi S, Ali D, Alessia MS et al. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2- cyt-c release cascading. OncoTargets and Therapy 2019; 12: 21- 30. https://doi.org/10.2147/OTT.S178510
  • 31. Kobayashi K, Terada C, Tsukamoto I. Methotrexate-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmacol 2002; 438 (1-2): 19-24. https://doi.org/10.1016/ s0014-2999(02)01264-5
  • 32. Mahmoud AM, Hozayen WG, Ramadan SM. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARgamma, and suppressing oxidative stress and apoptosis in rats. Biomedicine and Pharmacotherapy 2017; 94: 280-91. https://doi.org/10.1016/j. biopha.2017.07.101
  • 33. Elsawy H, Algefare AI, Alfwuaires M, Khalil M, Elmenshawy OM et al. Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Bioscience Reports 2020; 40 (6). https://doi. org/10.1042/BSR20193686
  • 34. Sadeghian I, Khalvati B, Ghasemi Y, Hemmati S. TAT-mediated intracellular delivery of carboxypeptidase G2 protects against methotrexate-induced cell death in HepG2 cells. Toxicology and Applied Pharmacology 2018; 346: 9-18. https://doi. org/10.1016/j.taap.2018.03.023
  • 35. Alidadiyani N, Salehi R, Ghaderi S, Samadi N, Davaran S. Synergistic antiproliferative effects of methotrexate-loaded smart silica nanocomposites in MDA-MB-231 breast cancer cells. Artificial Cells, Nanomedicine, and Biotechnology 2016; 44 (2): 603-609. https://doi.org/10.3109/21691401.2014.975235
APA Ergin A, Oltulu C, TÜRKER N, DEMİRBOLAT G (2023). In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. , 872 - 882. 10.55730/1300-0144.5651
Chicago Ergin Ahmet Doğan,Oltulu Cagatay,TÜRKER N.Pelin,DEMİRBOLAT Gulen Melike In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. (2023): 872 - 882. 10.55730/1300-0144.5651
MLA Ergin Ahmet Doğan,Oltulu Cagatay,TÜRKER N.Pelin,DEMİRBOLAT Gulen Melike In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. , 2023, ss.872 - 882. 10.55730/1300-0144.5651
AMA Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. . 2023; 872 - 882. 10.55730/1300-0144.5651
Vancouver Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. . 2023; 872 - 882. 10.55730/1300-0144.5651
IEEE Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G "In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies." , ss.872 - 882, 2023. 10.55730/1300-0144.5651
ISNAD Ergin, Ahmet Doğan vd. "In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies". (2023), 872-882. https://doi.org/10.55730/1300-0144.5651
APA Ergin A, Oltulu C, TÜRKER N, DEMİRBOLAT G (2023). In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turkish Journal of Medical Sciences, 53(4), 872 - 882. 10.55730/1300-0144.5651
Chicago Ergin Ahmet Doğan,Oltulu Cagatay,TÜRKER N.Pelin,DEMİRBOLAT Gulen Melike In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turkish Journal of Medical Sciences 53, no.4 (2023): 872 - 882. 10.55730/1300-0144.5651
MLA Ergin Ahmet Doğan,Oltulu Cagatay,TÜRKER N.Pelin,DEMİRBOLAT Gulen Melike In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turkish Journal of Medical Sciences, vol.53, no.4, 2023, ss.872 - 882. 10.55730/1300-0144.5651
AMA Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turkish Journal of Medical Sciences. 2023; 53(4): 872 - 882. 10.55730/1300-0144.5651
Vancouver Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turkish Journal of Medical Sciences. 2023; 53(4): 872 - 882. 10.55730/1300-0144.5651
IEEE Ergin A,Oltulu C,TÜRKER N,DEMİRBOLAT G "In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies." Turkish Journal of Medical Sciences, 53, ss.872 - 882, 2023. 10.55730/1300-0144.5651
ISNAD Ergin, Ahmet Doğan vd. "In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies". Turkish Journal of Medical Sciences 53/4 (2023), 872-882. https://doi.org/10.55730/1300-0144.5651