Yıl: 2023 Cilt: 47 Sayı: 4 Sayfa Aralığı: 198 - 213 Metin Dili: İngilizce DOI: 10.55730/1300-0101.2746 İndeks Tarihi: 14-03-2024

Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations

Öz:
Gas discharge plasmas are low-temperature nonequilibrium plasmas that have a wide range of scientific and technological applications. The particle-in-cell/Monte Carlo collision (PIC/MCC) method is a reliable approach for numerical analyses and simulations of such plasmas. In this study, we first provide a detailed description of the basics of this method. We then verify the programme code that we developed in Fortran by benchmarking the code against a widely referred reference study simulating a radiofrequency capacitively coupled plasma (RFCCP) in helium for various discharge conditions. We show that the results of the present study are in good agreement with that of the reference benchmark study. We also demonstrate that although PIC/MCC is a computationally demanding method, it is still possible to conduct some one-dimensional plasma simulations with standard personal computers within hours, thanks to recent advancements in computing technologies. More rigorous and especially high-dimensional problems, however, require acceleration and parallelization strategies.
Anahtar Kelime: Kinetic plasma simulation particle-in-cell/Monte Carlo collision radiofrequency capacitively cou- pled plasma benchmark

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] O. Buneman, “Dissipation of Currents in Ionized Media,” Physical Review 115 (1959) 503–517.
  • [2] J. Dawson, “One-Dimensional Plasma Model,” The Physics of Fluids 5 (1962) 445–459.
  • [3] P. Burger, “Elastic Collisions in Simulating One-Dimensional Plasma Diodes on the Computer,” The Physics of Fluids 10 (1967) 658–666.
  • [4] R. Shanny, J. M. Dawson, and J. M. Greene, “One-Dimensional Model of a Lorentz Plasma,” The Physics of Fluids 10 (1967) 1281–1287.
  • [5] H. R. Skullerud, “The stochastic computer simulation of ion motion in a gas subjected to a constant electric field,” Journal of Physics D: Applied Physics 1 (1968) 1567.
  • [6] Y. Yamashita, Y. Tani, R. Tsukizaki, D. Koda, and K. Nishiyama, “Numerical investigation of plasma properties for the microwave discharge ion thruster μ 10 using PIC-MCC simulation,” Physics of Plasmas 26 (2019) 073510.
  • [7] J. W. Koo and I. D. Boyd, “Computational model of a Hall thruster,” Computer Physics Communications 164 (2004) 442–447.
  • [8] C. K. Sarikaya, I. Rafatov, and A. A. Kudryavtsev, “Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method,” Physics of Plasmas 23 (2016) 063524.
  • [9] M. A. Lieberman and A. J. Lichtenberg, “Capacitive Discharges” in Principles of Plasma Discharges and Materials Processing, John Wiley & Sons Ltd (2005) 387–460.
  • [10] T. Makabe and Z. L. Petrovic, “Plasma Electronics: Applications in Microelectronic Device Fabrication,” CRC Press (2006).
  • [11] A. Quraishi and I. Kronhaus, “Modelling of capillary capacitively coupled radio frequency thruster,” Journal of Physics D: Applied Physics 54 (2021) 425201.
  • [12] Z. Donk ́o, A. Derzsi, M. Vass, B. Horv ́ath, S. Wilczek et al., “eduPIC: an introductory particle based code for radio-frequency plasma simulation,” Plasma Sources Science and Technology 30 (2021) 095017.
  • [13] Z. Donk ́o, A. Derzsi, I. Korolov, P. Hartmann, S. Brandt et al., “Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases,” Plasma Physics and Controlled Fusion 60 (2018) 014010.
  • [14] M. M. Turner, A. Derzsi, Z. Donk ́o, D. Eremin, S. J. Kelly, “Simulation benchmarks for low-pressure plasmas: Capacitive discharges,” Physics of Plasmas 20 (2013) 013507.
  • [15] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Measurement of electron energy distribution in low-pressure RF discharges,” Plasma Sources Science and Technology 1 (1992) 36–58.
  • [16] M. Surendra, “Radiofrequency discharge benchmark model comparison,” Plasma Sources Science and Technology 4 (1995) 56.
  • [17] R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles,” CRC Press (1988).
  • [18] C. K. Birdsall and A. B. Langdon, “Plasma Physics via Computer Simulation,” CRC Press (2004).
  • [19] C. K. Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC,” IEEE Transactions on Plasma Science 19 (1991) 65–85.
  • [20] Z. Donk ́o, “Apparent secondary-electron emission coefficient and the voltage-current characteristics of argon glow discharges,” Physical Review E 64 (2001) 026401.
  • [21] D. Mariotti, J. A. McLaughlin, and P. Maguire, “Experimental study of breakdown voltage and effective secondary electron emission coefficient for a micro-plasma device,” Plasma Sources Science and Technology 13 (2004) 207.
  • [22] H. C. Kim, F. Iza, S. S. Yang, M. Radmilovi ́c-Radjenovi ́c, and J. K. Lee, “Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects,” Journal of Physics D: Applied Physics 38 (2005) R283.
  • [23] I. Korolov, A. Derzsi, Z. Donk ́o, E. Sch ̈ungel, and J. Schulze, “The influence of electron reflection/sticking coefficients at the electrodes on plasma parameters in particle-in-cell simulations of capacitive radio- frequency plasmas,” Plasma Sources Science and Technology. 25 (2016) 015024.
  • [24] A. Sun, M. M. Becker, and D. Loffhagen, “PIC/MCC simulation of capacitively coupled discharges in helium: boundary effects,” Plasma Sources Science and Technology 27 (2018) 054002.
  • [25] V. Vahedi and M. Surendra, “A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges,” Computer Physics Communications 87 (1995) 179–198.
  • [26] M. Vass, P. Palla, and P. Hartmann, “Revisiting the numerical stability/accuracy conditions of explicit PIC/MCC simulations of low-temperature gas discharges,” Plasma Sources Science and Technology 31 (2022) 064001.
  • [27] A. Okhrimovskyy, A. Bogaerts, and R. Gijbels, “Electron anisotropic scattering in gases: A formula for Monte Carlo simulations,” Physical Review E 65 (2002) 037402.
  • [28] M. Surendra,D. B. Graves, and G. M. Jellum, “Self-consistent model of a direct-current glow discharge: Treatment of fast electrons,” Physical Review A 41 (1990) 1112–1125.
  • [29] Z. Donk ́o, “Particle simulation methods for studies of low-pressure plasma sources,” Plasma Sources Science and Technology 20 (2011) 024001.
  • [30] K. Nanbu, “Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb col- lisions for particle modeling of materials processing plasmas and cases,” IEEE Transactions on Plasma Science 28 (2000) 971–990.
  • [31] K. Koura, “Null-collision technique in the direct-simulation Monte Carlo method,” The Physics of Fluids 29 (1986) 3509–3511.
  • [32] M. J. Brennan, “Optimization of Monte Carlo codes using null collision techniques for experimental simulation at low E/N,” IEEE Transactions on Plasma Science. 19 (1991) 256–261.
  • [33] S. L. Lin and J. N. Bardsley, “Optimization of Monte Carlo codes using null collision techniques for experimental simulation at low E/N,” Journal of Chemical Physics 66 (1977) 435–445.
  • [34] A. V. Phelps, “The application of scattering cross sections to ion flux models in discharge sheaths,” Journal of Applied Physics 76 (1994) 747–753.
APA ARDA İ, RAFATOV İ (2023). Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. , 198 - 213. 10.55730/1300-0101.2746
Chicago ARDA İbrahim,RAFATOV İsmail Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. (2023): 198 - 213. 10.55730/1300-0101.2746
MLA ARDA İbrahim,RAFATOV İsmail Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. , 2023, ss.198 - 213. 10.55730/1300-0101.2746
AMA ARDA İ,RAFATOV İ Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. . 2023; 198 - 213. 10.55730/1300-0101.2746
Vancouver ARDA İ,RAFATOV İ Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. . 2023; 198 - 213. 10.55730/1300-0101.2746
IEEE ARDA İ,RAFATOV İ "Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations." , ss.198 - 213, 2023. 10.55730/1300-0101.2746
ISNAD ARDA, İbrahim - RAFATOV, İsmail. "Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations". (2023), 198-213. https://doi.org/10.55730/1300-0101.2746
APA ARDA İ, RAFATOV İ (2023). Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. Turkish Journal of Physics, 47(4), 198 - 213. 10.55730/1300-0101.2746
Chicago ARDA İbrahim,RAFATOV İsmail Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. Turkish Journal of Physics 47, no.4 (2023): 198 - 213. 10.55730/1300-0101.2746
MLA ARDA İbrahim,RAFATOV İsmail Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. Turkish Journal of Physics, vol.47, no.4, 2023, ss.198 - 213. 10.55730/1300-0101.2746
AMA ARDA İ,RAFATOV İ Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. Turkish Journal of Physics. 2023; 47(4): 198 - 213. 10.55730/1300-0101.2746
Vancouver ARDA İ,RAFATOV İ Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations. Turkish Journal of Physics. 2023; 47(4): 198 - 213. 10.55730/1300-0101.2746
IEEE ARDA İ,RAFATOV İ "Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations." Turkish Journal of Physics, 47, ss.198 - 213, 2023. 10.55730/1300-0101.2746
ISNAD ARDA, İbrahim - RAFATOV, İsmail. "Development and benchmark of a 1d3v electrostatic PIC/MCC numerical code for gas discharge simulations". Turkish Journal of Physics 47/4 (2023), 198-213. https://doi.org/10.55730/1300-0101.2746