Yıl: 2022 Cilt: 7 Sayı: 3 Sayfa Aralığı: 327 - 337 Metin Dili: İngilizce DOI: 10.31797/vetbio.1153190 İndeks Tarihi: 05-09-2023

The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells

Öz:
Biofilm formation is an important problem in the healthcare industry and veterinary medicine and is very common in natural, industrial or hospital environments. Microorganisms can become very resistant to antimicrobials and environmental factors by biofilm forming on biotic or abiotic surfaces. There is a need to develop new, effective and specific antimicrobials that can reduce pathogenicity in biofilm formation that threatens public health due to their role in medical device-related or infectious diseases. Candida species are opportunistic pathogenic yeasts and can cause superficial or disseminated infections. Especially C. glabrata is one of the most common microorganisms causing fungal infections in immunocompromised patients and drug resistance is observed when associated with biofilm. Tyrosol (2-[4-hydroxyphenyl] ethanol) can act as both a quorum sensing molecule and an exogenous agent on Candida species. In this study, the antifungal activity of tyrosol against a clinical C. glabrata isolate was investigated on both planktonic and biofilm forms. Broth microdilution test results demonstrated the inhibitory effect of tyrosol on C. glabrata. Transmission electron microscopic findings showed that tyrosol affected the planktonic C. glabrata cells in a multi targeted manner, and in the groups treated with tyrosol, significant damage was observed in the cell wall, cell membrane, cytoplasm, nucleus and mitochondria. Also, scanning electron microscopic images confirmed biofilm reduction in pre-/post-biofilm applications as a result of tyrosol treatment. In conclusion, tyrosol may be a potential alternative candidate for reducing the C. glabrata biofilm.
Anahtar Kelime: biofilm C. glabrata tyrosol electron microscopy

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Arias, L. S., Delbem, A. C. B., Fernandes, R. A., Barbosa, D. B., & Monteiro, D.R.(2016). Activity of tyrosol against single and mixed species oral biofilms. Journal of applied microbiology, 120(5), 1240-1249. https://doi.org/10.1111/jam.13070.
  • Bajunaid, S. O., Baras, B. H., Weir, M. D., & Xu, H. H. (2022). Denture Acrylic Resin Material with Antibacterial and Protein-Repelling Properties for the Prevention of Denture Stomatitis. Polymers, 14(2), 230. https://doi.org/10.3390/polym14020230.
  • Bianchi, C.M.P.D.C.; Bianchi, H.A.; Tadano, T.; De Paula, C.R.; Hoffmann-Santos, H.D.; Leite, D.P.L.; Hahn, R.C. (2016). Factors related to oral candidiasis in elderly users and non-users of removable dental prostheses. Revista do Instituto de Medicina Tropical de São Paulo, 58, e17. https://doi.org/10.1590/S1678-9946201658017.
  • Chen, L., Wen, Y. M. (2011). The role of bacterial biofilm in persistent infections and control strategies. International Journal of Oral Science, 3(2), 66-73.
  • Clinical Laboratory Standards Institute, (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard-Third Edition, CLSI document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
  • Cordeiro, R. D. A., Teixeira, C. E., Brilhante, R. S., Castelo-Branco, D. S., Alencar, L. P., de Oliveira, J. S., Monteiro A.J., Bandeira T.J.P.G., Sidrim J.J.C, Moreira, J.L.B., Rocha, M. F. (2015). Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Research, 15(4), fov012. https://doi.org/10.1093/femsyr/fov012.
  • Dağ, İ., Yenice Gürsu, Bükay., Dikmen, G., Ulken, Z. (2018). Influence of Carvacrol on the Planktonıc and Biofılm Forms of Salmonella spp And Listerıa Monocytogenes. Fresenius Environmental Bulletin, 27(11), 7270-7277.
  • Décanis, N., Tazi, N., Correia, A., Vilanova, M., & Rouabhia, M. (2011). Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. The Open Microbiology Journal, 5: 119-126. doi: 10.2174/1874285801105010119.
  • Do Vale, L. R., Delbem, A. C. B., Arias, L. S., Fernandes, R. A., Vieira, A. P. M., Barbosa, D. B., Monteiro, D. R. (2017). Differential effects of the combination of tyrosol with chlorhexidine gluconate on oral biofilms. Oral Diseases, 23(4), 537-541. doi:10.1111/odi.12648.
  • Gursu, B. Y., Dag, İ., & Dikmen, G. (2022). Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly (DL-lactide-co-glycolide)(PLGA) nanoparticles against Candida albicans. International Microbiology, 25(2), 245-258. https://doi.org/10.1007/s10123-021-00210-z.
  • Hannah, V. E., O'Donnell, L., Robertson, D., & Ramage, G. (2017). Denture stomatitis: causes, cures and prevention. Primary dental journal, 6(4), 46-51. https://doi.org/10.1308/205016817822230175.
  • Li, L., Redding, S., Dongari-Bagtzoglou, A. (2007). Candida glabrata, an emerging oral opportunistic pathogen. Journal of Dental Research, 86(3), 204- 215. https://doi.org/10.1177/154405910708600304
  • Lisoń, J., Taratuta, A., Paszenda, Z., Szindler, M., & Basiaga, M. (2022). Perspectives in Prevention of Biofilm for Medical Applications. Coatings, 12(2), 197. https://doi.org/10.3390/coatings12020197
  • Meşeli, S. E., Genç, G. E., Çolakoğlu, G., Pelit, S., Esra, K. O. Ç., & Tarçın, B. G. (2019). The evaluation of the colonization and biofilm formation capacity of the Candida species isolated from denture wearer patients. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(3), 387-393. https://doi.org/10.17567/ataunidfd.566861
  • Monteiro, D. R., Feresin, L. P., Arias, L. S., Barão, V. A. R., Barbosa, D. B., & Delbem, A. C. B. (2015). Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces. Medical Mycology, 53(7), 656-665. https://doi.org/10.1093/mmy/myv052
  • Monteiro, D. R., Arias, L. S., Fernandes, R. A., Deszo da Silva, L. F., de Castilho, M. O. V. F., Da Rosa, T. O., Vieria, A.P.M., Straioto, F.G., Barbosa , D.B., Delbem A.C.B. (2017). Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms. Journal of Applied Microbiology, 123(2), 392-400. https://doi.org/10.1111/jam.13513
  • Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219. https://doi.org/10.1016/j.procbio.2019.10.027
  • Yılmaz Öztürk, B., Yenice Gürsu, B., & Dağ, İ. (2022). In vitro effect of farnesol on planktonic cells and dual biofilm formed by Candida albicans and Escherichia coli. Biofouling, 1-12.
  • Ramage, G., Saville, S. P., Thomas, D. P., Lopez- Ribot, J. L. (2005). Candida biofilms: an update. Eukaryotic cell, 4(4), 633-638. DOI: https://doi.org/10.1128/EC.4.4.633-638.2005
  • Rodrigues, C. F., Černáková, L. (2020). Farnesol and tyrosol: secondary metabolites with a crucial quorum- sensing role in Candida biofilm development. Genes, 11(4), 444. https://doi.org/10.3390/genes11040444
  • Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10. https://doi.org/10.1186/s13756-019-0533-3
  • Seneviratne, C. J., Silva, W. J., Jin, L. J., Samaranayake, Y. H., Samaranayake, L. P. (2009). Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Archives of oral biology, 54(11), 1052-1060. https://doi.org/10.1016/j.archoralbio.2009.08.002
  • Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10. https://doi.org/10.1186/s13756-019-0533-3
  • Srinivasan, A., Torres, N. S., Leung, K. P., Lopez- Ribot, J. L., Ramasubramanian, A. K. (2017). nBio chip, a lab-on-a-chip platform of mono-and polymicrobial biofilms for high-throughput downstream applications. Msphere, 2(3), e00247-17. DOI: https://doi.org/10.1128/mSphere.00247-17
  • Yapıcı, M., Gürsu, B. Y., & Dağ, İ. (2021). In vitro antibiofilm efficacy of farnesol against Candida species. International Microbiology, 24(2), 251-262. https://doi.org/10.1007/s10123-021-00162-4
  • Yenice Gürsu, B. (2020). Potential antibiofilm activity of farnesol-loaded poly (DL-lactide-co- glycolide)(PLGA) nanoparticles against Candida albicans. Journal of Analytical Science and Technology, 11(1), 1-10. https://doi.org/10.1186/s40543-020-00241-7
  • Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in microbiology, 11, 589640. https://doi.org/10.3389/fmicb.2020.589640
APA adampour z, YILMAZ ÖZTÜRK B, Dag I (2022). The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. , 327 - 337. 10.31797/vetbio.1153190
Chicago adampour zarifeh,YILMAZ ÖZTÜRK BETÜL,Dag Ilknur The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. (2022): 327 - 337. 10.31797/vetbio.1153190
MLA adampour zarifeh,YILMAZ ÖZTÜRK BETÜL,Dag Ilknur The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. , 2022, ss.327 - 337. 10.31797/vetbio.1153190
AMA adampour z,YILMAZ ÖZTÜRK B,Dag I The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. . 2022; 327 - 337. 10.31797/vetbio.1153190
Vancouver adampour z,YILMAZ ÖZTÜRK B,Dag I The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. . 2022; 327 - 337. 10.31797/vetbio.1153190
IEEE adampour z,YILMAZ ÖZTÜRK B,Dag I "The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells." , ss.327 - 337, 2022. 10.31797/vetbio.1153190
ISNAD adampour, zarifeh vd. "The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells". (2022), 327-337. https://doi.org/10.31797/vetbio.1153190
APA adampour z, YILMAZ ÖZTÜRK B, Dag I (2022). The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. Journal of advances in vetbio science and techniques, 7(3), 327 - 337. 10.31797/vetbio.1153190
Chicago adampour zarifeh,YILMAZ ÖZTÜRK BETÜL,Dag Ilknur The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. Journal of advances in vetbio science and techniques 7, no.3 (2022): 327 - 337. 10.31797/vetbio.1153190
MLA adampour zarifeh,YILMAZ ÖZTÜRK BETÜL,Dag Ilknur The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. Journal of advances in vetbio science and techniques, vol.7, no.3, 2022, ss.327 - 337. 10.31797/vetbio.1153190
AMA adampour z,YILMAZ ÖZTÜRK B,Dag I The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. Journal of advances in vetbio science and techniques. 2022; 7(3): 327 - 337. 10.31797/vetbio.1153190
Vancouver adampour z,YILMAZ ÖZTÜRK B,Dag I The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells. Journal of advances in vetbio science and techniques. 2022; 7(3): 327 - 337. 10.31797/vetbio.1153190
IEEE adampour z,YILMAZ ÖZTÜRK B,Dag I "The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells." Journal of advances in vetbio science and techniques, 7, ss.327 - 337, 2022. 10.31797/vetbio.1153190
ISNAD adampour, zarifeh vd. "The inhibitory effects of tyrosol on clinical Candida glabrata planktonic and biofilm cells". Journal of advances in vetbio science and techniques 7/3 (2022), 327-337. https://doi.org/10.31797/vetbio.1153190