Yıl: 2023 Cilt: 7 Sayı: 2 Sayfa Aralığı: 268 - 276 Metin Dili: İngilizce DOI: 10.46519/ij3dptdi.1246758 İndeks Tarihi: 07-09-2023

VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING

Öz:
Thrombosis occurs of a blood clot in the vein and blocking blood flow. The formation of a clot within the artery is called arterial thrombosis. Due to arterial thrombosis, there are heart attacks and strokes that result in more than 17.9 million deaths worldwide each year. Covid-19, one of today's problems, further increases the mortality rate. The thrombosis mechanism includes factors coming from the blood and the vessel wall. This mechanism is based on local blood flow mechanisms and 3-dimensional (3D) vessel geometry. Microfluidics chip-based vascular models examine the interaction between blood and the vessel wall in vitro studies in thrombosis. Until now, the 3-dimensional geometry of the arteries and blood flow system of healthy or unhealthy individuals have not been fully modeled. In this study, a patient-specific occluded blood vessel model was obtained from computed tomography angiography (CTA) data, and miniature vascular structures were developed with a 3D printer. These structures were printed using Acrylonitrile Butadiene Styrene (ABS). 3D ABS samples were used in Polydimethylsiloxane (PDMS) based soft lithography molds to occur microfluidic systems containing miniaturized replicas of in vivo vessel geometries. A comprehensive simulation of stented vasculature was performed by flow analysis of artificial blood and cell culture by placing a commercial stent on PDMS-based models. This project has aimed to develop and characterize modules by creating microfluidic systems using 3D printers to examine the effects of stents placed in the patient's complex vascular system and to simulate operations before treatment and stent placement.
Anahtar Kelime: Patient-specific modelling 3D printing Microfluidics Stent.

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
  • 1. World Health Organization. “Cardiovascular Diseases (CVDs)”, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), June 11, 2021.
  • 2. Torres, I. and Luccia, N. de, “Artificial vascular models for endovascular training (3D printing)”, Innovative Surgical Sciences, Vol. 3, Issue 3, Pages 225–234, 2018.
  • 3. Jirouskova, M., Shet, A.S., & Johnson, G.J., “A guide to murine platelet structure, function, assays, and genetic alterations”, Journal of Thrombosis and Haemostasis, Vol. 5, Issue 4, Pages 661-669, 2007.
  • 4. Suo, J., Ferrara, D.E., Sorescu, D., Guldberg, R.E., Taylor, W.R., and Giddens, D.P. “Hemodynamic shear stresses in mouse aortas: implications for atherogenesis”, Arteriosclerosis, Thrombosis, And Vascular Biology, Vol. 27, Issue 2, Pages 346-351, 2007.
  • 5. Van Kruchten, R., Cosemans, J.M., and Heemskerk, J.W., “Measurement of whole blood thrombus formation using parallel-plate flow chambers–a practical guide”, Platelets, Vol. 23, Issue 3, Pages 229-242, 2012.
  • 6. Van der Meer, A.D., Orlova, V.V., ten Dijke, P., van den Berg, A., and Mummery, C.L., “Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device”, Lab on a Chip, Vol. 13, Issue 18, Pages 3562-3568, 2013.
  • 7. Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A, Groll, J., and Hutmacher, D.W., “25th Anniversary Article: Engineering Hydrogels for Biofabrication”, Advanced Materials, Vol. 25, Issue 36, Pages 5011-5028, 2013.
  • 8. Visser, J., Peters, B., Burger, T.J., Boomstra, J., Dhert, W.J., Melchels, F.P., & Malda, J., “Biofabrication of multi-material anatomically shaped tissue constructs”, Biofabrication, Vol. 5, Issue 035007, Pages 1-9, 2013.
  • 9. Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J.N., Moake, J., Ware R.E, Fletcher, D.A. and Lam, W.A., “In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology”,Journal of Clinical İnvestigation”, Vol. 122, Issue 1, Pages 408-418, 2011.
  • 10. Zheng, Y., Chen, J., Craven, M., Choi, N.W., Totorica, S., Diaz-Santana, A., Kermani P., Hempstead, B., Fischbach-Teschl, C., Lopez, J.A., and A.D., Stroock, “In vitro microvessels for the study of angiogenesis and thrombosis”, Proceedings of The National Academy of Sciences, Vol.109, Issue 24, Pages 9342-9347, 2012.
  • 11. Stevenson, K., The full spectrum of 3d printed surgical models, www.fabbaloo.com, March 3, 2021.
  • 12. Sahin M.E., “Example of Using 3D Printers in Hospital Biomedical Units” International Journal of 3D Printing Technologies and Digital Industry, Vol.6, Issue 2, 322-328, 2022.
  • 13. Costa, P.F., Albers, H.J., Linssen, J.E., Middelkamp, H.H., van der Hout, L., Passier, R., van der Berg, A, Malda, J. and van der Meer, A.D. “Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data”, Lab on a Chip, Vol.17, Issue 16, Pages 2785-2792, 2017.
  • 14. Knowlton, S., Yu, C. H., Ersoy, F., Emadi, S., Khademhosseini, A., and Tasoglu, S. “3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs”, Biofabrication, Vol. 8, Issue 2, Pages 025019, 2016.
  • 15. Zorlutuna, P., Annabi, N., Camci-Unal, G., Nikkhah, M., Cha, J.M., Nichol, J.W., Manbachi, A., Bae, H., Chen, S., Khademhosseini, A., “Microfabricated biomaterials for engineering 3D tissues”, Advanced Materials, Vol. 24, Issue 14, Pages 1782-1804, 2012.
  • 16. Jin, Z., Li, Y., Yu, K., Liu, L., Fu, J., Yao, X., Zhang, A., and He, Y., “3D Printing of Physical Organ Models: Recent Developments and Challenges”, Advanced Science, Vol. 8, Issue 17, Pages e2101394, 2021.
  • 17. Hacıoglu A., Yılmazer H. Ve Ustundag C. B., “3D printing for tissue engineering applications”, Politeknik Dergisi, Vol. 21, Issue 1, Pages 221-227, 2018.
  • 18. Vangunten, M. T., Walker, U. J., Do, H. G., & Knust, K. N., “3D-printed microfluidics for hands-on undergraduate laboratory experiments. Journal of Chemical Education”, Vol. 97, Issue 1, Pages 178-183, 2019.
  • 19. Sun, Z., “Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions”, Biomolecules, Vol.10, Issue 1577, Pages 1-34, 2020.
  • 20. Peters, E.N., “Plastics, Thermoplastics, Thermosets, and Elastomers, Handbook of Materials Selection”, Pages 363–365, John Wiley & Sons, New York, 2015.
  • 21. Montero, M., Roundy, S., Odell, D., Ahn, S.H. and Wright, P.K., “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Proceedings of Rapid Prototyping & Manufacturing Conference, Cincinnati, USA, 2001.
  • 22. Wu, J., Hamada, M., “Experiments, Planning, Analysis, and Parameter Design Optimization”, John Wiley & Sons, Inc., 2000.
  • 23. Khawaja, H. al, Alabdouli, H., Alqaydi, H., Mansour, A., Ahmed, W. and Jassmi, H. al, "Investigating the Mechanical Properties of 3D Printed Components", Advances in Science and Engineering Technology International Conferences (ASET), Pages 1-7, 2020.
  • 24. Çavuşoğlu, Y. “Synthesis and characterization of cross-linked poly (dimethyl siloxane) nanocomposites”, Master’s thesis (Publication No.10007838), Istanbul Technical University, Istanbul, 2013.
  • 25. Hsiao, H. M., Lee, K. H., Liao, Y. C., & Cheng, Y. C. “Hemodynamic simulation of intra-stent blood flow”, Procedia Engineering, Vol. 36, Pages 128-136, 2020.
APA Yilmazer H, UĞURTAŞ T (2023). VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. , 268 - 276. 10.46519/ij3dptdi.1246758
Chicago Yilmazer Hakan,UĞURTAŞ TUĞBA VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. (2023): 268 - 276. 10.46519/ij3dptdi.1246758
MLA Yilmazer Hakan,UĞURTAŞ TUĞBA VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. , 2023, ss.268 - 276. 10.46519/ij3dptdi.1246758
AMA Yilmazer H,UĞURTAŞ T VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. . 2023; 268 - 276. 10.46519/ij3dptdi.1246758
Vancouver Yilmazer H,UĞURTAŞ T VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. . 2023; 268 - 276. 10.46519/ij3dptdi.1246758
IEEE Yilmazer H,UĞURTAŞ T "VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING." , ss.268 - 276, 2023. 10.46519/ij3dptdi.1246758
ISNAD Yilmazer, Hakan - UĞURTAŞ, TUĞBA. "VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING". (2023), 268-276. https://doi.org/10.46519/ij3dptdi.1246758
APA Yilmazer H, UĞURTAŞ T (2023). VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 268 - 276. 10.46519/ij3dptdi.1246758
Chicago Yilmazer Hakan,UĞURTAŞ TUĞBA VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry 7, no.2 (2023): 268 - 276. 10.46519/ij3dptdi.1246758
MLA Yilmazer Hakan,UĞURTAŞ TUĞBA VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry, vol.7, no.2, 2023, ss.268 - 276. 10.46519/ij3dptdi.1246758
AMA Yilmazer H,UĞURTAŞ T VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry. 2023; 7(2): 268 - 276. 10.46519/ij3dptdi.1246758
Vancouver Yilmazer H,UĞURTAŞ T VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING. International Journal of 3D Printing Technologies and Digital Industry. 2023; 7(2): 268 - 276. 10.46519/ij3dptdi.1246758
IEEE Yilmazer H,UĞURTAŞ T "VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING." International Journal of 3D Printing Technologies and Digital Industry, 7, ss.268 - 276, 2023. 10.46519/ij3dptdi.1246758
ISNAD Yilmazer, Hakan - UĞURTAŞ, TUĞBA. "VASCULAR ARTERY SIMULATION MODEL FABRICATION FOR PRE-SURGERY KIT FOR STENT APPLICATION THROUGH 3D PRINTING". International Journal of 3D Printing Technologies and Digital Industry 7/2 (2023), 268-276. https://doi.org/10.46519/ij3dptdi.1246758