Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar

442 143

Proje Grubu: SOBAG Sayfa Sayısı: 87 Proje No: 119K204 Proje Bitiş Tarihi: 01.06.2022 Metin Dili: Türkçe İndeks Tarihi: 08-09-2023

Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar

Öz:
Enerji tüketiminden kaynaklanan sera gazı emisyonları, enerjide dışa bağımlılık riskleri ve iklim değişikliği gibi sorunlar hükümetlerin temel kaygıları arasında yer almaktadır. Bu sorunların çözümüne yönelik en yaygın politika yaklaşımlarından biri enerji verimliliğini artıran uygulamaların (EVU) desteklenmesidir. Son yıllarda gerek dünya genelinde gerekse de Türkiye özelinde artan sayıda EVU?ya rağmen, enerji tüketiminin arttığı görülmektedir. Bunun altında yatan sebeplerden biri, EVU sonucu gerçekleşen enerji tasarruflarının öngörülen tasarruflardan daha az olmasıdır. Bu kavram enerji ekonomisi literatüründe rebound etkiler (RE) olarak tanımlanmakta ve enerji politikalarının ve EVU sonuçlarının analiz edilmesinde büyük önem arz etmektedir. Bu proje çalışması kapsamında Türkiye sanayi sektöründeki işletmeler tarafından 2009 yılından bu yana devlet desteği almış ve tamamlanmış olan enerji alanındaki verimlilik artırıcı projelere (VAP) ait planlanan ve gerçekleşen enerji tasarrufu verileri kullanılarak üretim tarafı için doğrudan RE hesaplanmış ve EVU?yu etkileyen faktörler nitel ve nicel analiz yöntemleri kullanılarak belirlenmiştir. Bu proje çalışmasının sonuçlarına göre, farkındalığın artırılması, tekno-ekonomik kapasitenin geliştirilmesi, sübvansiyonların ve teşviklerin güçlendirilmesi, ekonomiyle ilgili, bilgiyle ilgili ve yeterlilikle ilgili bariyerlerin hafifletilmesi daha fazla EVU ile sonuçlanacaktır. Ek olarak, yüksek piyasa risklerini ve enerji fiyat belirsizliklerini azaltmak ve daha az kar algısı ile başa çıkmak, EVU için iyi bir iklim yaratacaktır. Ayrıca, EVU performansları, sektörel deneyimler ve bunlarla ilgili iyi uygulamalar, bunlar aracılığıyla enerji tasarrufu fırsatları işletmeler arasında paylaşılırsa enerji verimliliği gelişecektir.
Anahtar Kelime: Enerji verimliliği enerji verimliliği yatırımları rebound etkiler iklim değişikliği

Konular: İktisat

Öz:
Greenhouse gas emissions, the risks of external dependency, and climate change are among the main issues of governments. One of the most common policy approaches to aaddressing these issues is supporting energy efficiency (EE). Despite the widespread implementation of EE worldwide and in Turkey recently, energy consumption has grown. One of the reasons behind this is the discrepancy between actual and planned energy savings. This concept is called the rebound effect (RE) in the energy economics literature, and it is of great importance regarding EE-related policies. This project has two main aims. The first one is to calculate the direct RE for the production side using the planned and realized energy savings data of the energy efficiency increasing projects (VAP), completed by the enterprises in the Turkish industry sector since 2009. The second main aim of this project is to determine the factors that affect the EVU using qualitative and quantitative methods. According to the results of this project, raising awareness, building techno-economic capacity, strengthening subsidies and incentives, and easing economic, knowledge-related, and competence-related barriers will result in more EVU. In addition, mitigating high market risks and energy price uncertainties and dealing with the perception of less profit will create a good climate for EVU. In addition, energy efficiency will improve if EVU performances, industrial experiences, and related good practices as long as the energy-saving opportunities through them are shared among businesses.
Anahtar Kelime:

Konular: İktisat
Erişim Türü: Erişime Açık
  • Aghili, N., Amirkhani, M. 2021. “SEM-PLS Approach to Green Building”, Encyclopedia, 1(2), 472-481.
  • Amjadi, G., Lundgren, T., Persson, L., Zhang, S. 2018. “The rebound effect in Swedish heavy industry”, Energy Economics, 71, 140-148.
  • Anderson, S. T., Newell, R. G. 2004. “Information programs for technology adoption: the case of energy-efficiency audits”, Resource and Energy Economics, 26(1), 27-50.
  • Apeaning, R. W., Thollander, P. 2013. “Barriers to and driving forces for industrial energy efficiency improvements in African industries–a case study of Ghana's largest industrial area”, Journal of Cleaner Production, 53, 204-213.
  • Backman, F. 2017. “Barriers to energy efficiency in Swedish non-energy-intensive micro-and small-sized enterprises—A case study of a local energy program”, Energies, 10(1), 100.
  • Bagozzi, R. P., Yi, Y., Phillips, L. W. 1991. “Assessing construct validity in organizational research”, Administrative science quarterly, 421-458.
  • Barclay, D. W., Higgins, C. A., Thompson, R. 1995. “The partial least squares approach to causal modeling: personal computer adoption and use as illustration”, Technology Studies, 2(2), 285–309.
  • Becker, J. M., Klein, K., Wetzels, M. 2012. “Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models”, Long range planning, 45(5-6), 359-394.
  • Bentzen, J. 2004. “Estimating the rebound effect in US manufacturing energy consumption”, Energy Economics, 26, 123–134.
  • Bergh, C., Cohen, B. 2011. “Energy efficiency in the South African oil refiniing industry”, 2011 Proceedings of the 8th Conference on the Industrial and Commercial Use of Energy, IEEE.
  • Berkhout, P.H.G., Muskens, J.C., Velthuijsen, J.W. 2000. “Defining the rebound effect”, Energy Policy, 28, 425–432.
  • Binswanger, M. 2001. “Technological progress and sustainable development: what about the rebound effect?”, Ecological Economics, 36, 119-132.
  • Brunke, J. C., Johansson, M., Thollander, P. 2014. “Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry”, Journal of Cleaner Production, 84, 509-525.
  • Cagno, E., Worrell, E., Trianni, A., Pugliese, G. 2013. “A novel approach for barriers to industrial energy efficiency”, Renewable and Sustainable Energy Reviews, 19, 290- 308.
  • Chan, K., Gillingham, K. 2015. “The microeconomic theory of the rebound effect and its welfare implications”, J. Assoc. Environ. Resour. Econ., 2(1), 133-159.
  • Cheah, J. H., Ting, H., Ramayah, T., Memon, M. A., Cham, T. H., Ciavolino, E. 2019. “A comparison of five reflective–formative estimation approaches: reconsideration and recommendations for tourism research”, Quality & Quantity, 53(3), 1421-1458.
  • Chin, W. W. 1998. “The partial least squares approach for structural equation modeling”, Modern Methods for Business Research, 295–336.
  • Chin, W. W. 2010. “How to write up and report PLS analyses”, Handbook of partial least squares: Concepts, methods, and applications” Editörler: Vinzi, V. E., Chin, W. W. , Henseler, J. , Wang, H. Berlin: Springer.
  • Chin, W. W., Newstead, P. R. 1999. “Structural equation modeling analysis with small sample research”, Strategies for Small Sample Research.
  • De Groot, H. L., Verhoef, E. T., Nijkamp, P. 2001. “Energy saving by firms: decision-making, barriers and policies”, Energy Economics, 23(6), 717-740.
  • Druckman, A., Chitnis, M., Sorrell, S., Jackson, T. 2011. “Missing carbon reductions: exploring rebound and backfire effects in UK households”, Energy Policy, 39, 3572–3581.
  • Du, H., Matisoff, D. C., Wang, Y., Liu, X. 2016. “Understanding drivers of energy efficiency changes in China”, Applied Energy, 184, 1196-1206.
  • Edwards, J. R. 2001. “Multidimensional constructs in organizational behavior research: An integrative analytical framework”, Organizational Research Methods, 4(2), 144-192.
  • Efron, B. 1992. "Bootstrap methods: another look at the jackknife”, (sayfa 569-593). Breakthroughs in statistics New York: Springer.
  • Enerji ve Tabii Kaynaklar Bakanlığı, 2021. https://enerji.gov.tr/enerji-isleri-genel-mudurlugu- denge-tablolari.
  • Enerji Verimliliği ve Çevre Dairesi Başkanlığı, 2021. Enerji Verimliliği Veri Analizi Serisi-1.
  • Falk, R. F.,, Miller, N. B. 1992. A primer for soft modeling. University of Akron Press.
  • Farrell, A. M. 2010. “Insufficient discriminant validity: A comment on Bove, Pervan, Beatty, and Shiu (2009)”, Journal of Business Research, 63(3), 324-327.
  • Filippini, M., Hunt, L. C. 2011. “Energy demand and energy efficiency in the OECD countries: a stochastic demand frontier approach”, The energy journal, 32(2).
  • Filippini, M., Hunt, L. C. 2012. “US residential energy demand and energy efficiency: A stochastic demand frontier approach”, Energy economics, 34(5), 1484-1491.
  • Fleiter, T., Schleich, J., Ravivanpong, P. 2012. “Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany”, Energy Policy, 51, 863-875. Fleiter, T., Worrell, E., Eichhammer, W. 2011. “Barriers to energy efficiency in industrial bottom-up energy demand models—A review”, Renewable and Sustainable Energy Reviews, 15(6), 3099-3111.
  • Fornell, C., Bookstein, F. L. 1982. “Two structural equation models: LISREL and PLS applied to consumer exit-voice theory”, Journal of Marketing Research, 19(4), 440-452.
  • Fornell, C., Larcker, D. 1981. “Structural equation models with unobservable variables and measurement error: Algebra and statistics”, Journal of Marketing Research, 18(3), 382- 388.
  • Gillingham, K., Newell, R.G., Palmer, K. 2009. “Energy efficiency economics and policy”, Annual Review of Resource Economics, 1(1), 597–620.
  • Götz, O., Liehr-Gobbers, K., Krafft, M. 2010. “Evaluation of structural equation models using the partial least squares (PLS) approach”, Handbook of partial least squares. , Berlin: Springer.
  • Greening, L.A., Greene, D.L., Difiglio, C. 2000. “Energy efficiency and consumption- the rebound effect—a survey”, Energy Policy, 28 (6–7), 389–401.
  • Haas, R., Biermayr, P. 2000. “The rebound effect for space heating Empirical evidence from Austria”, Energy Policy, 28 (6–7), 403–410.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nci basım). Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE.
  • Hair, J. F., Ringle, C. M., Sarstedt, M. 2011. “PLS-SEM: Indeed a silver bullet”, Journal of Marketing Theory and Practice, 19, 139-151. http://dx.doi:10.2753/MTP1069- 6679190202
  • Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. 2010. Multivariate Data Analysis. 7th ed. Upper Saddle River, New Jersey: Prentice Hall.
  • Hair, Jr, J. F., Sarstedt, M., Hopkins, L., Kuppelwieser, V. G. 2014. “Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research”, European Business Review.
  • Haraldsson, J., Johansson, M. T. 2019. “Barriers to and drivers for improved energy efficiency in the Swedish aluminium industry and aluminium casting foundries”, Sustainability, 11(7), 2043.
  • Harris, J., Anderson, J., Shafron, W. 2000. “Investment in energy efficiency: a survey of Australian firms”, Energy Policy, 28(12), 867-876.
  • Hasan, A. S. M., Rokonuzzaman, M., Tuhin, R. A., Salimullah, S. M., Ullah, M., Sakib, T. H., Thollander, P. 2019. “Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh”, Energies, 12(9), 1775.
  • Hassan, M. T., Burek, S., Asif, M. 2017. “Barriers to industrial energy efficiency improvement– manufacturing SMEs of Pakistan”, Energy Procedia, 113, 135-142.
  • Henseler, J., Ringle, C. M., Sarstedt, M. 2015. “A new criterion for assessing discriminant validity in variance-based structural equation modeling”, Journal of the Academy of Marketing Science, 43(1), 115-135.
  • Henseler, J., Ringle, C. M., Sinkovics, R. R. 2009. “The use of partial least squares path modeling in international marketing”,. Advances in International Marketing, 20, 277– 319.
  • Hrovatin, N., Cagno, E., Dolšak, J., Zorić, J. 2021. “How important are perceived barriers and drivers versus other contextual factors for the adoption of energy efficiency measures: An empirical investigation in manufacturing SMEs”,Journal of Cleaner Production, 323, 129123.
  • Hunt, L.C., Ryan D. L., 2014. "Catching on the Rebound: Why Price Elasticities are Generally Inappropriate Measures of Rebound Effects," Surrey Energy Economics Centre (SEEC), School of Economics, Discussion Papers (SEEDS) 148.
  • Hükümetlerarası İklim Değişikliği Paneli, IPPC. 2021. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.p df.
  • Istanbul Politika Merkezi, IPM. 2022. Turkey’s Decarbonization Pathway Net Zero in 2050, 2022.
  • Jaffe, A. B., Stavins, R. N. 1994. “The energy paradox and the diffusion of conservation technology”, Resource and energy economics, 16(2), 91-122.
  • Jarvis, C. B., MacKenzie, S. B., Podsakoff, P. M. 2003. “A critical review of construct indicators and measurement model misspecification in marketing and consumer research”, Journal of Consumer Research, 30(2), 199–218.
  • Jevons, W.S. 1865. The coal question: can Britain survive? London: Macmillan.
  • Jin, Sang-Hyeon. 2007. “The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea”, Energy Policy, 35, 5622–5629.
  • Johnson, R. E., Rosen, C. C., Chang, C. H. 2011. “To aggregate or not to aggregate: Steps for developing and validating higher-order multidimensional constructs”,” Journal of Business and Psychology, 26(3), 241-248.
  • Kalangos, C. 2017. “Barriers and policy drivers to energy efficiency in energy intensive Turkish industrial sectors”, International Journal of Energy Economics and Policy, 7(3), 110- 120.
  • Kline, E., Wilson, C., Ereshefsky, S., Tsuji, T., Schiffman, J., Pitts, S., Reeves, G. 2011. “Convergent and discriminant validity of attenuated psychosis screening tools”, Schizophrenia Research, 134(1), 49-53.
  • Kock, N. 2015. “Common method bias in PLS-SEM: A full collinearity assessment approach”, International Journal of e-Collaboration (ijec), 11(4), 1-10.
  • Kostka, G., Moslener, U., Andreas, J. 2013. “Barriers to increasing energy efficiency: evidence from small-and medium-sized enterprises in China”, Journal of Cleaner Production, 57, 59-68.
  • Kostka, G., Moslener, U., Andreas, J. G. 2011. “Barriers to energy efficiency improvement: Empirical evidence from small-and-medium sized enterprises in China”, . Frankfurt School-Working Paper Series, No. 178.
  • Krishnan, M., Samandari, H., Woetzel, J., Smit, S., Pacthod, D., Pinner, D., ... & Imperato, D. (2022). The net-zero transition: What it would cost, what it could bring. McKinsey Global Institute. https://policycommons.net/artifacts/2213603/the-net-zero- transition/2970547/ Son Erişim Tarihi: 15.07.2022.
  • Labidi, E., and Abdessalem, T. 2018. “An econometric analysis of the household direct rebound effects for electricity consumption in Tunisia”, Energy Strategy Reviews, 19, 7–18.
  • Lawrence, A., Nehler, T., Andersson, E., Karlsson, M., Thollander, P. 2019. “Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry”, Journal of Cleaner Production, 223, 67-82.
  • Lee, K. H. 2015. “Drivers and barriers to energy efficiency management for sustainable development”, Sustainable Development, 23(1), 16-25.
  • Lin, B., and Tan, R. 2017. “Estimating energy conservation potential in China’s energy intensive industries with rebound effect”, Journal of Cleaner Production, 156, 899-910.
  • Lin, B., and Zhao, H. 2016. “Technological progress and energy rebound effect in China’s textile industry: Evidence and policy implications”, Renewable and Sustainable Energy Reviews, 60, 173–181.
  • Lin, B., Chen Y., Zhang G. 2017. “Technological progress and rebound effect in China’s nonferrous metals industry: An empirical study”, Energy Policy, 109, 520–529.
  • Marshall, C., Rossman, G.B. 1989. Designing Qualitative Research. Newbury Park, CA: Sage.
  • Meath, C., Linnenluecke, M., Griffiths, A. 2016. “Barriers and motivators to the adoption of energy savings measures for small-and medium-sized enterprises (SMEs): the case of the ClimateSmart Business Cluster program”, Journal of Cleaner Production, 112, 3597-3604.
  • Nehler, T., Parra, R., Thollander, P. 2018. “Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits”,Energy Efficiency, 11(5), 1281-1302.
  • Oikonomou, V., Becchis, F., Steg, L., Russolillo, D. 2009. “Energy saving and energy efficiency concepts for policy making”, Energy Policy, 37(11), 4787-4796. 1304.
  • Okazaki, T., Yamaguchi, M. 2011. “Accelerating the transfer and diffusion of energy saving technologies steel sector experience—Lessons learned”, Energy Policy, 39(3), 1296-
  • Olsthoorn, M., Schleich, J., Klobasa, M. 2015. “Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective”, Energy Policy, 76, 32-42.
  • Orea, L., Llorca, M., Filippini, M. 2015. “A new approach to measuring the rebound effect associated to energy efficiency improvements: an application to the US residential energy demand”, Energy Economics, 49, 599–609.
  • Palm, J., Thollander, P . 2010. “An interdisciplinary perspective on industrial energy efficiency”, Applied Energy, 87(10), 3255-3261.
  • Polites, G. L., Roberts, N., Thatcher, J. 2012. “Conceptualizing models using multidimensional constructs: a review and guidelines for their use”, European Journal of Information Systems, 21(1), 22-48.
  • Reddy, B. S. 2013. “Barriers and drivers to energy efficiency–A new taxonomical approach”, Energy Conversion and Management, 74, 403-416.
  • Ringle, C.M., Sarstedt, M., Straub, D.W. 2012. “Editor’s comments: a critical look at the use of PLS-SEM in MIS quarterly”, MIS Quarterly, 36(1), 3-14.
  • Rohdin, P., Thollander, P. 2006. “Barriers to and driving forces for energy efficiency in the non- energy intensive manufacturing industry in Sweden”, Energy, 31(12), 1836-1844.
  • Rohdin, P., Thollander, P., Solding, P. 2007. “Barriers to and drivers for energy efficiency in the Swedish foundry industry”, Energy Policy, 35(1), 672-677.
  • Roy, J. 2000. “The rebound effect: some empirical evidence from India”, Energy Policy, 28, 433–438.
  • Sardianou, E., 2008. “Barriers to industrial energy efficiency investments in Greece”, Journal of Cleaner Production, 16, 1416-1423.
  • Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., Ringle, C. M. 2019. “How to specify, estimate, and validate higher-order constructs in PLS-SEM”, Australasian Marketing Journal (AMJ), 27(3), 197-211.
  • Saunders, H.D. 1992. “The Khazzoom–Brookes postulate and neoclassical growth”, Energy Journal, 13 (4), 130–148.
  • Saunders, H.D. 2008. “Fuel conserving (and using) production functions”, Energy Economics 30 (5), 2184–2235.
  • Saunders, H.D. 2013. “Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts”, Technological Forecasting and Social Change, 80 (7), 1317-1330.
  • Schleich, J. 2009. “Barriers to energy efficiency: a comparison across the German commercial and services sector”, Ecological Economics, 68, 2150–2159.
  • Schleich, J., Gruber, E. 2008. “Beyond case studies: Barriers to energy efficiency in commerce and the services sector”, Energy Economics, 30(2), 449-464.
  • Shi, H., Peng, S. Z., Liu, Y., Zhong, P. 2008. “Barriers to the implementation of cleaner production in Chinese SMEs: government, industry and expert stakeholders' perspectives”, Journal of Cleaner Production, 16(7), 842-852.
  • Soepardi, A., Pratikto, P., Santoso, P. B., Tama, I. P., Thollander, P. 2018. “Linking of barriers to energy efficiency improvement in Indonesia’s steel industry”, Energies, 11(1), 234.
  • Solnørdal, M. T., Foss, L. 2018. “Closing the energy efficiency gap—A systematic review of empirical articles on drivers to energy efficiency in manufacturing firms”, Energies, 11(3), 518.
  • Somuncu, T. 2016. Can energy efficiency save energy? An economy-wide rebound effect simulation for Turkey. “Master” tezi, İstanbul Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Bölümü, 70 sayfa, İstanbul. (http:// tez.yok.gov.tr/ Tez no. 436982)
  • Sorrell, S. 2009. “Jevons’ Paradox revisited: the evidence for backfire from improved energy efficiency”,” Energy Policy, 37 (4) , 1456-1469.
  • Sorrell, S., Dimitropoulos, J. 2008. “The rebound effect: microeconomic definitions. Limitations and extensions”, Ecological Economics, 65 (3), 636–649.
  • Sorrell, S., O'Malley, E., Schleich, J., Scott, S. 2004. The Economics of Energy Efficiency – Barriers to Cost-Effective Investment. Edward Elgar Publishing.
  • Sorrell, S., Schleich, J., Scott, S., O’Malley, E., Trace, F., Boede, U., ... Radgen, P. 2000. Reducing barriers to energy efficiency in public and private organizations. Science and Policy Technology Research (SPRU). Sussex, UK: University of Sussex.
  • Stone, M. 1974. Cross validatory choice and assessment of statistical prediction”, Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133.
  • Sunikka-Blank, M., and Galvin, R. 2012. “Introducing the prebound effect: the gap between performance and actual energy consumption”,” Building Research Information, 40 (3), 260-273.
  • Thollander, P., Backlund, S., Trianni, A., Cagno, E. 2013. “Beyond barriers–A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden”, Applied Energy, 111, 636-643.
  • Thollander, P., Danestig, M., Rohdin, P. 2007. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs”, Energy Policy, 35(11), 5774-5783.
  • Thollander, P., Dotzauer, E. 2010. “An energy efficiency program for Swedish industrial small- and medium-sized enterprises”, Journal of Cleaner Production, 18(13), 1339-1346.
  • Thollander, P., Ottosson, M. 2008. “An energy efficient Swedish pulp and paper industry– exploring barriers to and driving forces for cost-effective energy efficiency investments”, Energy Efficiency, 1(1), 21-34.
  • Topallı, N. 2012. Energy efficiency and rebound effect of residential electricity consumption in Turkey. “Doktora” Tezi. Selçuk Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Ana Bilim Dalı, 269 sayfa, Konya. (http:// tez.yok.gov.tr/ Tez no.325824)
  • Trianni, A., Cagno, E. 2012. “Dealing with barriers to energy efficiency and SMEs: Some empirical evidences”, Energy, 37(1), 494-504.
  • Trianni, A., Cagno, E., Farnè, S. 2014. “An empirical investigation of barriers, drivers and practices for energy efficiency in primary metals manufacturing SMEs”, Energy Procedia, 61, 1252-1255.
  • Trianni, A., Cagno, E., Farné, S. 2016. “Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium- sized enterprises”, Applied Energy, 162, 1537-1551.
  • Trianni, A., Cagno, E., Thollander, P., Backlund, S. 2013a. “Barriers to industrial energy efficiency in foundries: a European comparison”, Journal of Cleaner Production, 40, 161-176.
  • Trianni, A., Cagno, E., Worrell, E. 2013b. “Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs”, Energy Policy, 61, 430-440.
  • Trotta, G. 2018. “Factors affecting energy-saving behaviours and energy efficiency investments in British households”, Energy Policy, 114, 529-539.
  • Uluslararası Enerji Ajansı (International Energy Agency) IEA. 2018. Market Report Series: Energy Efficiency 2018.
  • Uluslararası Enerji Ajansı (International Energy Agency) IEA. 2021. Net Zero by 2050 A Roadmap for the Global Energy Sector, 2021.
  • Urbach, N., Ahlemann, F. 2010. “Structural equation modeling in information systems research using partial least squares”,Journal of Information Technology Theory and Application, 11(2), 5-40.
  • Van Riel, A. C., Henseler, J., Kemény, I., Sasovova, Z. 2017. “Estimating hierarchical constructs using consistent partial least squares: The case of second-order composites of common factors”, Industrial management & data systems.
  • Wang, J., Yang, F., Zhang, X., Zhou, Q. 2018. “Barriers and drivers for enterprise energy efficiency: An exploratory study for industrial transfer in the Beijing-Tianjin-Hebei region”, Journal of Cleaner Production, 200, 866-879.
  • Wold, H. 1982. “Soft modeling. The basic design and some extensions”, in Jöreskog, K.G. and Wold, H. (Eds.), Systems Under Indirect Observation. Causality, Structure, Prediction, North-Holland, Amsterdam, 1-54.
  • Yenilebilir Enerji Genel Müdürlüğü (YEGM). 2018. “2017-2023 Ulusal Enerji Verimliliği Eylem Planı”. http://www.yegm.gov.tr/document/20180102M1_2018_eng.pdf Son Erişim Tarihi: 26 Temmuz 2018.
  • Yung, Y. F., Bentler, P. M. 1994. “Bootstrap corrected ADF test statistics in covariance structure analysis”, British Journal of Mathematical and Statistical Psychology, 47(1), 63-84.
  • Zafar, S. S. 2021. “Barriers involve in the energy efficiency in the manufacturing industries of Pakistan”, International Journal of Energy Economics and Policy, 11(2), 293-299.
  • Zhang, Y. J., Peng H. R., Su, B. 2017. “Energy rebound effect in China's Industry: An aggregate and disaggregate analysis”, Energy Economics, 61, 199-208.
APA SİVRİKAYA A, TEKELİ S (2022). Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. , 0 - 87.
Chicago SİVRİKAYA AYŞEN,TEKELİ SONGÜL Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. (2022): 0 - 87.
MLA SİVRİKAYA AYŞEN,TEKELİ SONGÜL Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. , 2022, ss.0 - 87.
AMA SİVRİKAYA A,TEKELİ S Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. . 2022; 0 - 87.
Vancouver SİVRİKAYA A,TEKELİ S Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. . 2022; 0 - 87.
IEEE SİVRİKAYA A,TEKELİ S "Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar." , ss.0 - 87, 2022.
ISNAD SİVRİKAYA, AYŞEN - TEKELİ, SONGÜL. "Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar". (2022), 0-87.
APA SİVRİKAYA A, TEKELİ S (2022). Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. , 0 - 87.
Chicago SİVRİKAYA AYŞEN,TEKELİ SONGÜL Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. (2022): 0 - 87.
MLA SİVRİKAYA AYŞEN,TEKELİ SONGÜL Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. , 2022, ss.0 - 87.
AMA SİVRİKAYA A,TEKELİ S Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. . 2022; 0 - 87.
Vancouver SİVRİKAYA A,TEKELİ S Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar. . 2022; 0 - 87.
IEEE SİVRİKAYA A,TEKELİ S "Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar." , ss.0 - 87, 2022.
ISNAD SİVRİKAYA, AYŞEN - TEKELİ, SONGÜL. "Türkiye Sanayi Sektöründe Verimlilik Artırıcı Projelerin Doğrudan Rebound Etkisi ve Enerji Verimliliğini Etkileyen Bariyer ve Motivasyonlar". (2022), 0-87.