Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı

Yıl: 2023 Cilt: 13 Sayı: 3 Sayfa Aralığı: 858 - 870 Metin Dili: Türkçe DOI: 10.31466/kfbd.1252029 İndeks Tarihi: 20-09-2023

Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı

Öz:
Otomatik gerilim regülatörü (OGR), güç sistemlerindeki senkron generatörün uç gerilimini kontrol etmek ve düzenlemek amacıyla kullanılan önemli bir kontrol sistemidir. Bu amaçla, bu çalışmada, OGR sistemi için çeşitli meta-sezgisel optimizasyon teknikleri ayarlı denetleyici tasarımı gerçekleştirilmiştir. OGR sisteminde denetleyici olarak oransal – integral – türev (PID) denetleyici kullanılmıştır ve bu denetleyicinin parametreleri son yıllarda geliştirilmiş olan açlık oyunları algoritması (HGS), INFO algoritması ve goril birlikleri optimizasyonu (GTO) gibi optimizasyon teknikleri yardımıyla optimal olarak ayarlanmıştır. Amaçlanan optimizasyon teknikleri ayarlı PID denetleyicisinin geçici zaman performansları simülasyon çalışmaları yardımıyla incelenmiştir ve aşma değeri, yükselme süresi, yerleşme süresi gibi performans değerleri açısından karşılaştırılmıştır. Ek olarak, denetleyiciler arasında kutup/sıfır analizi, bode analizi ve gürbüzlük analizi açısından karşılaştırma gerçekleştirilmiştir. Elde edilen sonuçlardan PID denetleyicinin parametrelerinin ayarlanması amacıyla kullanılan HGS, INFO ve GTO optimizasyon tekniklerinin birbirine yakın ve dikkate değer performans gösterdiği görülmektedir.
Anahtar Kelime: Otomatik gerilim regülatörü PID denetleyici Açlık oyunları algoritması INFO algoritması Goril birlikleri optimizasyonu.

The Controller Design Tuned by Numerous Optimization Techniques for Automatic Voltage Regulator System

Öz:
The automatic voltage regulator (AVR) is an important control system used to control and regulate the terminal voltage of the synchronous generator in power systems. For this purpose, in this study, various meta-heuristic optimization techniques tuned controller design for the AVR system has been carried out. A proportional – integral – derivative (PID) controller is used as the controller in the AVR system and the parameters of this controller are optimally adjusted using optimization techniques such as the hunger games algorithm (HGS), INFO algorithm and gorilla troops optimization (GTO) developed in recent years. The transient time performances of the PID controller tuned to the proposed optimization techniques were investigated with the help of simulation studies and compared in terms of performance values such as overshoot, rise time, settling time. In addition, comparisons were made between the controllers in terms of pole/zero analysis, bode analysis and robustness analysis. From the results obtained, it is seen that the HGS, INFO and GTO optimization techniques used for adjusting the parameters of the PID controller have close to each other and remarkable performance.
Anahtar Kelime: Automatic voltage regulator PID controller Hunger games algorithm INFO algorithm Gorilla troops optimization

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10), 5887–5958. https://doi.org/10.1002/int.22535
  • Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195. https://doi.org/10.1016/j.eswa.2022.116516
  • Ayas, M. S., & Sahin, E. (2021). FOPID controller with fractional filter for an automatic voltage regulator. Computers and Electrical Engineering, 90. https://doi.org/10.1016/j.compeleceng.2020.106895
  • Bhullar, A. K., Kaur, R., & Sondhi, S. (2020). Enhanced crow search algorithm for AVR optimization. Soft Computing, 24(16), 11957–11987. https://doi.org/10.1007/s00500-019-04640-w
  • BURNAZ, S. A. N., & AYAS, M. Ş. (2020). Effects of objective function in PID controller design for an AVR system. International Journal of Applied Mathematics Electronics and Computers, 245–255. https://doi.org/10.18100/ijamec.803257
  • Çelik, E. (2018). Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Computing and Applications, 30(6), 1991–2002. https://doi.org/10.1007/s00521-017-3335-7
  • Çelik, E., & Durgut, R. (2018). Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Engineering Science and Technology, an International Journal, 21(5), 1104–1111. https://doi.org/10.1016/j.jestch.2018.08.006
  • Duman, S., Yörükeren, N., & Altaş, I. H. (2016). Gravitational search algorithm for determining controller parameters in an automatic voltage regulator system. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2387–2400. https://doi.org/10.3906/elk-1404-14
  • Ekinci, S., & Hekimoglu, B. (2019). Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System. IEEE Access, 7, 39935–39947. https://doi.org/10.1109/ACCESS.2019.2906980
  • Ekinci, S., Izci, D., Eker, E., & Abualigah, L. (2022). An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10216-2
  • Ekinci, S., Izci, D., Eker, E., & Abualigah, L. (2023). An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator. Artificial Intelligence Review, 56(2), 1731–1762. https://doi.org/10.1007/s10462-022-10216-2
  • Gozde, H., & Taplamacioglu, M. C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 348(8), 1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012
  • Hekimoğlu, B. (2019). Sine-cosine algorithm-based optimization for automatic voltage regulator system. Transactions of the Institute of Measurement and Control, 41(6), 1761–1771. https://doi.org/10.1177/0142331218811453
  • Hekimoğlu, B., & Ekinci, S. (2018). 5th International Conference on Electrical and Electronics Engineering (ICEEE 2018) : May 3-5, 2018, Istanbul, Turkey.
  • İzci, D., & Ekinci, S. (2021). Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral–derivative controller. Electrica, 21(1), 151–159. https://doi.org/10.5152/ELECTRICA.2021.20077
  • Izci, D., Ekinci, S., & Zeynelgil, H. L. (2023). Controlling an automatic voltage regulator using a novel Harris hawks and simulated annealing optimization technique. Advanced Control for Applications. https://doi.org/10.1002/adc2.121
  • Jumani, T. A., Mustafa, M. W., Hussain, Z., Md. Rasid, M., Saeed, M. S., Memon, M. M., Khan, I., & Nisar, K. S. (2020). Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system. Alexandria Engineering Journal, 59(4), 2429–2440. https://doi.org/10.1016/j.aej.2020.03.005
  • Khan, I. A., Alghamdi, A. S., Jumani, T. A., Alamgir, A., Awan, A. B., & Khidrani, A. (2019). Salp Swarm Optimization Algorithm-Based Fractional Order PID Controller for Dynamic Response and Stability Enhancement of an Automatic Voltage Regulator System. Electronics, 8(12), 1472. https://doi.org/10.3390/electronics8121472
  • Kose, E. (2020). Optimal Control of AVR System with Tree Seed Algorithm-Based PID Controller. IEEE Access, 8, 89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628
  • Micev, M., Ćalasan, M., Ali, Z. M., Hasanien, H. M., & Abdel Aleem, S. H. E. (2021). Optimal design of automatic voltage regulation controller using hybrid simulated annealing – Manta ray foraging optimization algorithm. Ain Shams Engineering Journal, 12(1), 641–657. https://doi.org/10.1016/j.asej.2020.07.010
  • Micev, M., Ćalasan, M., & Oliva, D. (2020). Fractional order PID controller design for an AVR system using Chaotic Yellow Saddle Goatfish Algorithm. Mathematics, 8(7). https://doi.org/10.3390/math8071182
  • Micev, M., Ćalasan, M., & Oliva, D. (2021). Design and robustness analysis of an Automatic Voltage Regulator system controller by using Equilibrium Optimizer algorithm. Computers and Electrical Engineering, 89. https://doi.org/10.1016/j.compeleceng.2020.106930
  • Micev, M., Ćalasan, M., & Radulović, M. (2021, February 16). Optimal design of real PID plus second-order derivative controller for AVR system. 2021 25th International Conference on Information Technology, IT 2021. https://doi.org/10.1109/IT51528.2021.9390145
  • Mosaad, A. M., Attia, M. A., & Abdelaziz, A. Y. (2019). Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Engineering Journal, 10(4), 755–767. https://doi.org/10.1016/j.asej.2019.07.004
  • ÖZGENÇ, B., AYAS, M. Ş., & ALTAŞ, İ. (2020). Otomatik Gerilim Regülatörü için Evrimsel Algoritma Tabanlı Filtreli PID Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi, 10(1), 74–90. https://doi.org/10.31466/kfbd.719953
  • Tabak, A. (2021). Maiden application of fractional order PID plus second order derivative controller in automatic voltage regulator. International Transactions on Electrical Energy Systems, 31(12). https://doi.org/10.1002/2050-7038.13211
  • Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177. https://doi.org/10.1016/j.eswa.2021.114864
APA Can Ö (2023). Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. , 858 - 870. 10.31466/kfbd.1252029
Chicago Can Özay Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. (2023): 858 - 870. 10.31466/kfbd.1252029
MLA Can Özay Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. , 2023, ss.858 - 870. 10.31466/kfbd.1252029
AMA Can Ö Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. . 2023; 858 - 870. 10.31466/kfbd.1252029
Vancouver Can Ö Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. . 2023; 858 - 870. 10.31466/kfbd.1252029
IEEE Can Ö "Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı." , ss.858 - 870, 2023. 10.31466/kfbd.1252029
ISNAD Can, Özay. "Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı". (2023), 858-870. https://doi.org/10.31466/kfbd.1252029
APA Can Ö (2023). Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi, 13(3), 858 - 870. 10.31466/kfbd.1252029
Chicago Can Özay Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi 13, no.3 (2023): 858 - 870. 10.31466/kfbd.1252029
MLA Can Özay Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi, vol.13, no.3, 2023, ss.858 - 870. 10.31466/kfbd.1252029
AMA Can Ö Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi. 2023; 13(3): 858 - 870. 10.31466/kfbd.1252029
Vancouver Can Ö Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı. Karadeniz Fen Bilimleri Dergisi. 2023; 13(3): 858 - 870. 10.31466/kfbd.1252029
IEEE Can Ö "Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı." Karadeniz Fen Bilimleri Dergisi, 13, ss.858 - 870, 2023. 10.31466/kfbd.1252029
ISNAD Can, Özay. "Otomatik Gerilim Regülatörü Sistemi için Farklı Optimizasyon Teknikleri Ayarlı Denetleyici Tasarımı". Karadeniz Fen Bilimleri Dergisi 13/3 (2023), 858-870. https://doi.org/10.31466/kfbd.1252029