Yıl: 2023 Cilt: 28 Sayı: 2 Sayfa Aralığı: 645 - 664 Metin Dili: İngilizce DOI: 10.17482/uumfd.1258916 İndeks Tarihi: 12-10-2023

GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS

Öz:
In this work, a bio-based, lightweight, coated cotton fabric by using a cleaner manufacturing method, “photocuring” was proposed in order to be used as an alternative to the conventional heat-, solvent-, and waterbased outdoor textile (tarpaulin, tent, etc.) manufacturing. For this purpose, photocurable bio-based phosphorylated oligomer was synthesized with the reaction between a monomethacrylate functional phosphorus containing monomer and epoxidized soybean oil (ESBO). The synthesized phosphorylated ESBO (P-ESBO) oligomer was used in cotton fabric coatings in different proportions and photocured with UV light exposure. The effects of the amount of P-ESBO oligomer in the formulation on the crystalline morphology, mechanical, thermal, surface wettability, flammability, and abrasion resistance properties of the cotton fabrics were all searched. It was revealed that the increasing amount of P-ESBO oligomer in the formulation increases the drapeability and tensile strength of the fabrics with enhanced flame resist property by giving higher char yields. Besides, phosphorylated oligomer also acted as an adhesion promoter between the fabric surface and coating layer resulting a better abrasion resistance property.
Anahtar Kelime: Soybean Oil Photocuring Ring Opening Cotton Fabric Phosphorus

Yeşil Kimya İle Fotokürlenebilen Fosfor İçerikli Pamuk Kumaş Kaplamaları

Öz:
Bu çalışmada, biyo-esaslı, hafifletilmiş, kaplı pamuk kumaşların üretiminde, geleneksel ısı enerjisi, su ve çözücü kullanımını gerektiren dış mekân tekstilleri (tente, branda vb.) üretimine alternatif olabilecek, çevreci bir üretim yöntemi olan fotokürleme kullanılması hedeflenmiştir. Bu amaçla, fotokürlenebilen, biyo-esaslı fosforlanmış bir oligomer, monometakrilat fonksiyonelliği olan fosfor içerikli bir oligomer ve epokside edilmiş soya fasulyesi yağı (ESBO) reaksiyonu ile sentezlenmiştir. Sentezlenen fosforlanmış ESBO oligomeri (PESBO) farklı oranlarda kaplama formülasyonlarında kullanılmıştır. Daha sonra kaplanan bu formülasyonlar pamuk kumaş üzerine uygulanmış ve UV ile kürlenmiştir. Formülasyondaki P-ESBO oligomer oranının, pamuk kumaşın kristal morfolojisi, mekanik, termal, yüzey ıslanabilirliği, alev alma ve aşınma dayanımı özelliklerine olan etkileri incelenmiştir. Elde edilen bulgular ışığında, formülasyondaki P-ESBO oligomer artışının kumaşların dökümlülüğü ve kopma mukavemetini arttırdığı, alev dayanımını ise daha yüksek piroliz ürünleri vererek geliştirdiği gözlenmiştir. Bununla birlikte, fosfor içerikli oligomerin pamuk kumaş ve kaplama formülasyonu arasında yapışmayı arttırıcı bir rol oynadığı ve böylece kaplı kumaşların aşınma dayanımını iyileştirdiği görülmüştür.
Anahtar Kelime: Soya Fasulyesi Yağı Fotokürleme Halka Açılma Pamuk Kumaş Fosfor

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. AATCC Test Method 79-2018: Absorbency of Bleached Textiles," ed, 2018.
  • 2. ASTM D974-14e2, Standard Test Method for Acid and Base Number by Color-Indicator Titration, ASTM International, West Conshohocken, PA, 2014, www.astm.org. doi:10.1520/D0974-14E02
  • 3. ASTM D1652-11(2019), Standard Test Method for Epoxy Content of Epoxy Resins, ASTM International, West Conshohocken, PA, 2019, www.astm.org. doi: 10.1520/D1652-11R19
  • 4. ISO 5470-2:2003 Rubber- or plastics-coated fabrics — Determination of abrasion resistance Part 2: Martindale abrader.
  • 5. ISO 13934-1:2013 Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method.
  • 6. ASTM D2863-19:2019 Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index). doi: 10.1520/D2863-19
  • 7. Abrishami, S., F. Mousazadegan and N. Ezazshahabi (2019). "Evaluating the crease recovery performance of woven fabrics considering bending behaviour in various directions." The Journal of the Textile Institute 110(5): 690-699. doi: 10.1080/00405000.2018.1511229
  • 8. Alam, M., D. Akram, E. Sharmin, F. Zafar and S. Ahmad (2014). "Vegetable oil based eco-friendly coating materials: A review article." Arabian Journal of Chemistry 7(4): 469-479. doi: 10.1016/j.arabjc.2013.12.023
  • 9. Aliverdipour, N., N. Ezazshahabi and F. Mousazadegan (2020). "Characterization of the effect of fabric’s tensile behavior and sharp object properties on the resistance against penetration." Forensic science international 306: 110097. doi: 10.1016/j.forsciint.2019.110097
  • 10. Bajpai, M., V. Shukla and A. Kumar (2002). "Film performance and UV curing of epoxy acrylate resins." Progress in Organic Coatings 44(4): 271-278. doi: 10.1016/S0300-9440(02)00059-0
  • 11. Baker, K., J. Drelich, I. Miskioglu, R. Israel and H. Herkowitz (2007). "Effect of polyethylene pretreatments on the biomimetic deposition and adhesion of calcium phosphate films." Acta biomaterialia 3(3): 391-401. doi: 10.1016/j.actbio.2006.08.008
  • 12. Baştürk, E., T. İnan and A. Güngör (2013). "Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating." Progress in Organic Coatings 76(6): 985-992. doi: 10.1016/j.porgcoat.2012.10.007
  • 13. Cai, L., C. Chen, W. Wang, X. Gao, X. Kuang, Y. Jiang, L. Li and G. Wu (2020). "Acid-free epoxidation of soybean oil with hydrogen peroxide to epoxidized soybean oil over titanium silicalite-1 zeolite supported cadmium catalysts." Journal of Industrial and Engineering Chemistry 91: 191-200. doi: 10.1016/j.jiec.2020.07.052
  • 14. Chen, C., L. Cai, L. Li, L. Bao, Z. Lin and G. Wu (2019). "Heterogeneous and non-acid process for production of epoxidized soybean oil from soybean oil using hydrogen peroxide as clean oxidant over TS-1 catalysts." Microporous and Mesoporous Materials 276: 89-97. doi: 10.1016/j.micromeso.2018.09.028
  • 15. Chen, L., L. Song, P. Lv, G. Jie, Q. Tai, W. Xing and Y. Hu (2011). "A new intumescent flame retardant containing phosphorus and nitrogen: Preparation, thermal properties and application to UV curable coating." Progress in Organic Coatings 70(1): 59-66. doi: 10.1016/j.porgcoat.2010.10.002
  • 16. Chen, Y., L. Yang, J. Wu, L. Ma, D. E. Finlow, S. Lin and K. Song (2013). "Thermal and mechanical properties of epoxy resin toughened with epoxidized soybean oil." Journal of thermal analysis and calorimetry 113(2): 939-945. doi: 10.1007/s10973-012-2859-4
  • 17. Çakmakçı, E. (2017). "Allylamino diphenylphosphine oxide and poss containing flame retardant photocured hybrid coatings." Progress in Organic Coatings 105: 37-47. doi: 10.1016/j.porgcoat.2016.11.013
  • 18. Gan, L. (2021). Production and application of fine powder from textile waste (Doctoral dissertation, Institute for Frontier Materials, Deakin University, Australia).
  • 19. Gao, M., W. Wu and F. Wu (2009). "Thermal degradation and smoke suspension of cotton cellulose modified with THPC and its lanthanide metal complexes." Journal of thermal analysis and calorimetry 98(1): 245-251. doi: 10.1007/s10973-009-0122-4
  • 20. Gong, K., K. Zhou and B. Yu (2020). "Superior thermal and fire safety performances of epoxy-based composites with phosphorus-doped cerium oxide nanosheets." Applied Surface Science 504: 144314. doi: 10.1016/j.apsusc.2019.144314
  • 21. Gu, W., X. Liu, Q. Gao, S. Gong, J. Li and S. Q. Shi (2020). "Multiple hydrogen bonding enables strong, tough, and recyclable soy protein films." ACS Sustainable Chemistry & Engineering 8(20): 7680- 7689. doi: 10.1021/acssuschemeng.0c01333
  • 22. Gupta, P., V. Uniyal and S. Naithani (2013). "Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive." Carbohydrate polymers 94(2): 843-849. doi: 10.1016/j.carbpol.2013.02.012
  • 23. Habib, F. and M. Bajpai (2010). "UV Curable heat resistance Epoxy Acrylate Coatings." Journal of Chemistry & Chemical Technology 4(3): 205-216. doi: 10.23939/chcht04.03.205
  • 24. Hwang, J.-S., M.-H. Kim, D.-S. Seo, J.-W. Won and D.-K. Moon (2009). "Effects of soft segment mixtures with different molecular weight on the properties and reliability of UV curable adhesives for electrodes protection of plasma display panel (PDP)." Microelectronics Reliability 49(5): 517-522. doi: 10.1016/j.microrel.2009.02.001
  • 25. Islam, M. R., M. D. H. Beg and S. S. Jamari (2014). "Development of vegetable oil based polymers." Journal of applied polymer science 131(18). doi: 10.1002/app.40787
  • 26. Kaczmarek, H. and I. Vuković-Kwiatkowska (2012). "Preparation and characterization of interpenetrating networks based on polyacrylates and poly (lactic acid)." eXPRESS Polymer Letters 6(1). doi: 10.3144/expresspolymlett.2012.9
  • 27. Kalita, H. (2018). 4. Shape memory polyurethanes: From materials to synthesis. Shape Memory Polymers, De Gruyter: 103-120. doi: 10.1515/9783110570175-004
  • 28. Kowalczyk, A., K. Kowalczyk and M. Weisbrodt (2018). "Influence of a phosphorus-based methacrylate monomer on features of thermally curable self-adhesive structural tapes." International Journal of Adhesion and Adhesives 85: 286-292. doi: 10.1016/j.ijadhadh.2018.07.002
  • 29. Law, K. Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. The Journal of Physical Chemistry Letters, 5(4), 686-688. doi: 10.1021/jz402762h
  • 30. Li, P., S. Ma, J. Dai, X. Liu, Y. Jiang, S. Wang, J. Wei, J. Chen and J. Zhu (2017). "Itaconic acid as a green alternative to acrylic acid for producing a soybean oil-based thermoset: synthesis and properties." ACS Sustainable Chemistry & Engineering 5(1): 1228-1236. doi: 10.1021/acssuschemeng.6b02654
  • 31. Liu, H., K. Xu, H. Cai, J. Su, X. Liu, Z. Fu and M. Chen (2012). "Thermal properties and flame retardancy of novel epoxy based on phosphorus modified Schiff base." Polymers for Advanced Technologies 23(1): 114-121. doi: 10.1002/pat.1832
  • 32. Liu, R., J. Luo, S. Ariyasivam, X. Liu and Z. Chen (2017). "High biocontent natural plant oil based UV-curable branched oligomers." Progress in Organic Coatings 105: 143-148. doi: 10.1016/j.porgcoat.2016.11.009
  • 33. Liu, Z., L. Wang, C. Bao, X. Li, L. Cao, K. Dai and L. Zhu (2011). "Cross-linked PEG via degradable phosphate ester bond: synthesis, water-swelling, and application as drug carrier." Biomacromolecules 12(6): 2389-2395. doi: 10.1021/bm2004737
  • 34. Luangtriratana, P., B. K. Kandola and J. R. Ebdon (2015). "UV-polymerisable, phosphorus-containing, flame-retardant surface coatings for glass fibre-reinforced epoxy composites." Progress in Organic Coatings 78: 73-82. doi: 10.1016/j.porgcoat.2014.10.004
  • 35. Moon, J., Y. Shul, H. Han, S. Hong, Y. Choi and H. Kim (2005). "A study on UV-curable adhesives for optical pick-up: I. Photo-initiator effects." International journal of adhesion and adhesives 25(4): 301-312. doi: 10.1016/j.ijadhadh.2004.09.003
  • 36. Nam, S., A. D. French, B. D. Condon and M. Concha (2016). "Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II." Carbohydrate polymers 135: 1-9. doi: 10.1016/j.carbpol.2015.08.035
  • 37. Rowe, M. C. and B. J. Brewer (2018). "AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction." Computers & geosciences 120: 21-31. doi: 10.1016/j.cageo.2018.07.004
  • 38. Salim, T. A., N. H. Abas, S. Shahidan, R. Deraman, M. F. Hasmori, S. Nagapan, T. Y. Ghing and N. Ain (2018). "Investigation on the Influence of Non-Degradable Polyvinyl Tarpaulin in Concrete Mixture." Sustainable Construction and Building Technology: 71-82. ISBN 978-967-2216-39-1
  • 39. Shi, L.-S., L.-Y. Wang and Y.-N. Wang (2006). "The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis." European Polymer Journal 42(7): 1625-1633. doi: 10.1016/j.eurpolymj.2006.01.007
  • 40. Su, Y.-C., L.-P. Cheng, K.-C. Cheng and T.-M. Don (2012). "Synthesis and characterization of UV-and thermo-curable difunctional epoxyacrylates." Materials Chemistry and Physics 132(2-3): 540- 549. doi: 10.1016/j.matchemphys.2011.11.067
  • 41. Sung, S. and D. S. Kim (2013). "UV curing and mechanical properties of polyester–acrylate nanocomposites films with silane modified antimony doped tin oxide nanoparticles." Journal of applied polymer science 129(3): 1340-1344. doi: 10.1002/app.38824
  • 42. Ugur, M., H. Kılıç, M. Berkem and A. Güngör (2014). "Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries." Chemical Papers 68(11): 1561-1572. doi: 10.2478/s11696-014-0611-1
  • 43. Uysal, N., G. Acik and M. A. Tasdelen (2017). "Soybean oil based thermoset networks via photoinduced CuAAC click chemistry." Polymer International 66(7): 999-1004. doi: 10.1002/pi.5346
  • 44. Wang, K., C. Fu, R. Wang, G. Tao and Z. Xia (2021). "High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric." Composites Part B: Engineering 212: 108663. doi: 10.1016/j.compositesb.2021.108663
  • 45. Wehbi, M., A. Mehdi, C. Negrell, G. David, A. Alaaeddine and B. Ameduri (2019). "Phosphorus-containing fluoropolymers: State of the art and applications." ACS applied materials & interfaces 12(1): 38-59. doi: 10.1021/acsami.9b16228
  • 46. Wu, Q., Y. Hu, J. Tang, J. Zhang, C. Wang, Q. Shang, G. Feng, C. Liu, Y. Zhou and W. Lei (2018). "High-performance soybean-oil-based epoxy acrylate resins:“Green” synthesis and application in uv- curable coatings." ACS Sustainable Chemistry & Engineering 6(7): 8340-8349. doi: 10.1021/acssuschemeng.8b00388
  • 47. Wu, Y., A. Liu, W. Li and Z. Li (2019). "Synthesis of carborane acrylate and flame retardant modification on silk fabric via graft copolymerization with phosphate containing acrylate." Fire and Materials 43(7): 880-891. doi: 10.1002/fam.2748
  • 48. Xu, L., W. Wang and D. Yu (2017). "Preparation of a reactive flame retardant and its finishing on cotton fabrics based on click chemistry." RSC advances 7(4): 2044-2050. doi: 10.1039/C6RA26075F
  • 49. Yang, Z., Z. Zeng, Z. Xiao and H. Ji (2014). "Preparation and controllable release of chitosan/vanillin microcapsules and their application to cotton fabric." Flavour and fragrance journal 29(2): 114-120. doi: 10.1002/ffj.3186
  • 50. Yildiz, Z. (2023). "Photocurable soybean oil based phosphorus containing coatings for cotton fabrics: The influence of reactive diluents." Progress in Organic Coatings 174: 107255. doi: 10.1016/j.porgcoat.2022.107255
  • 51. Yildiz, Z., A. Gungor, A. Onen and I. Usta (2016). "Synthesis and characterization of dual-curable epoxyacrylates for polyester cord/rubber applications." Journal of Industrial Textiles 46(2): 596-610. doi: 10.1177/1528083715594980
  • 52. Yildiz, Z., A. Onen and A. Gungor (2016). "Preparation of flame retardant epoxyacrylate-based adhesive formulations for textile applications." Journal of adhesion science and Technology 30(16): 1765-1778. doi: 10.1080/01694243.2016.1159036
  • 53. Zhang, C., T. F. Garrison, S. A. Madbouly and M. R. Kessler (2017). "Recent advances in vegetable oil-based polymers and their composites." Progress in Polymer Science 71: 91-143. doi: 10.1016/j.progpolymsci.2016.12.009
APA yildiz z (2023). GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. , 645 - 664. 10.17482/uumfd.1258916
Chicago yildiz zehra GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. (2023): 645 - 664. 10.17482/uumfd.1258916
MLA yildiz zehra GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. , 2023, ss.645 - 664. 10.17482/uumfd.1258916
AMA yildiz z GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. . 2023; 645 - 664. 10.17482/uumfd.1258916
Vancouver yildiz z GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. . 2023; 645 - 664. 10.17482/uumfd.1258916
IEEE yildiz z "GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS." , ss.645 - 664, 2023. 10.17482/uumfd.1258916
ISNAD yildiz, zehra. "GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS". (2023), 645-664. https://doi.org/10.17482/uumfd.1258916
APA yildiz z (2023). GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 645 - 664. 10.17482/uumfd.1258916
Chicago yildiz zehra GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no.2 (2023): 645 - 664. 10.17482/uumfd.1258916
MLA yildiz zehra GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.28, no.2, 2023, ss.645 - 664. 10.17482/uumfd.1258916
AMA yildiz z GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2023; 28(2): 645 - 664. 10.17482/uumfd.1258916
Vancouver yildiz z GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2023; 28(2): 645 - 664. 10.17482/uumfd.1258916
IEEE yildiz z "GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28, ss.645 - 664, 2023. 10.17482/uumfd.1258916
ISNAD yildiz, zehra. "GREEN PHOTOCURABLE PHOSPHORUS CONTAINING COATINGS ON COTTON FABRICS". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/2 (2023), 645-664. https://doi.org/10.17482/uumfd.1258916