Yıl: 2023 Cilt: 7 Sayı: 3 Sayfa Aralığı: 160 - 171 Metin Dili: İngilizce DOI: 10.26701/ems.1298839 İndeks Tarihi: 28-09-2023

Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers

Öz:
This research investigates the use of computational fluid dynamics (CFD) and artificial neural networks (ANNs) to optimise the design of finned tube heat exchangers for use in condensing wall-mounted boilers (WHBcs). Fin height, thickness, and distance are selected as the input design parameters, and the internal volume of the heat engine is modelled using the CFDHT (CFD and heat transfer) method. Different ANN structures are trained and tested on the resulting data to identify the optimal training process. The trained ANN is then used to predict various output parameters, including total heat transfer on the inner surface of the tube, maximum temperature on the fins, total heat transfer per unit volume of the heat exchanger, and pressure drop between the inlet and outlet of the internal volume. The optimal design scenarios are evaluated based on design criteria, and the ANN is found to have good statistical performance, with an average accuracy of 1.00018 and a maximum relative error of 9.16%. The ANN is able to accurately estimate the optimal design case.
Anahtar Kelime: Heat Exchanger Computational Fluid Dynamics Artificial Neural Networks Boilers

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] Wais, P. (2010). Fluid flow consideration in fin-tube heat exc- hanger optimization. Archives of Thermodynamics, 31: 87– 104. doi:10.2478/v10173-010-0016-7.
  • [2] Bilirgen, H., Dunbar S., Levy E. K. (2013). Numerical modelling of finned heat exchangers. Applied Thermal Engineering, 61: 278-288. doi:10.1016/j.applthermaleng.2013.08.002
  • [3] Kim, N. H., Youn B., Webb R. L. (1999). Air side heat transfer and friction correlations for plain fin and tube heat exchangers with staggered tube arrangements. ASME Transaction, 121. doi:10.1115/1.2826030.
  • [4] Tutar, M., Akkoca A. (2004). Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin and tube heat exchanger. Numerical Heat Transfer, Part A: Applications, 46:3, 301-321. doi:10.1080/10407780490474762
  • [5] Wang, C. C., Lee, W. S., Sheu, W. J. (2001). A comparative study of compact enhanced fin and tube heat exchangers. Interna- tional Journal of Heat and Mass Transfer, 44(18): 3565-3573. doi:10.1016/S0017-9310(01)00011-4.
  • [6] Du, Y. J., Wang, C. C. (2000). An experimental study of the air side performance of superslit fin and tube heat exchangers. International Journal of Heat and Mass Transfer, 43(24) : 4475- 4482. doi: 10.1016/S0017-9310(00)00082-X.
  • [7] Perrotin, T., Clodic, D. (2003). Fin efficiency calculation in en- hanced fin and tube heat exchanger in dry conditions. 21st International Congress of Refrigeration: Serving the Needs of Mankind. ISBN: 2913149324.
  • [8] Antonescu, N., Stanescu, P.D. (2017). Computational model for a consensing boiler with finned tubes heat exchanger. Energy Procedia, 112 : 555-562. doi:10.1016/j.egypro.2017.03.1116.
  • [9] Balanescu, D. T., Homutescu V.M. (2017). Experimental study on the combustion system optimization in the case of a 36 kW condensing boiler. Procedia Engineering, 181 : 706-711. do- i:10.1016/j.proeng.2017.02.453.
  • [10] Vidyadhar H. I., Mahesh S., Malpani R., Sapre M., Kulkarni A. J. (2019). Adaptive range genetic algorithm: A hybrid optimi- zation approach and its application in the design and eco- nomic optimization of shell-and-tube heat exchanger. Engi- neering Applications of Artificial Intelligence, 85 : 444-461. doi:10.1016/j.engappai.2019.07.001.
  • [11] Zoebiry N., Humfeld K.D. (2021). A physics-informed machi- ne learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Engi- neering Applications of Artificial Intelligence. 101: 104232. do- i:10.1016/j.engappai.2021.104232.
  • [12] Shang Z. (2005). Application of artificial intelligence CFD ba- sed on neural network in vapor-water two-phase flow. Engi- neering Applications of Artificial Intelligence. 18 : 663-671. doi: 10.1016/j.engappai.2005.01.007.
  • [13] Cheng Y., Huang Y., Pang B., Zhang W. (2018). ThermalNet: A deep reinforcement learning-based combustion optimi- zation system for coal-fired boiler. Engineering Applications of Artificial Intelligence. 74 : 303-311. doi: 10.1016/j.engap- pai.2018.07.003.
  • [14] Mohanraj M., Jayaraj S., Muraleedharan C. (2015). Applications of artificial neural networks for thermal analysis of heat exc- hangers – A review. International Journal of Thermal Sciences. 90 : 150-172. doi:10.1016/j.ijthermalsci.2014.11.030.
  • [15] Singh V., Aute V., Radermacher R. (2009). A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet. International Journal of Refrigeration. 32 : 1724-1735. doi:10.1016/j.ijrefrig.2009.05.011.
  • [16] Pacheco-Vega A., Diaz G., Sen M., Yang K. T., Mcclain R. L. (2001). Heat rate predictions in humid air-water heat exc- hangers using correlations and neural networks. Journal Heat Transfer. 123 : 348-354. doi:10.1115/1.1351167.
  • [17] Wu Z.G., Zhang J.Z., Tao Y.B., He Y.L., Tao W.Q. (2008). App- lication of artificial neural network method for performance prediction of Gas cooler in a CO2 heat pump. International Journal of Heat Mass Transfer. 51 : 5459-5464. doi:10.1016/j.ij- heatmasstransfer.2008.03.009.
  • [18] Kamsuwan C., Wang X., Seng L.P., Xian C.K., Piemjaiswang R., Piumsomboon P., Pratumwal Y., Otarawanna S., Chalermsin- suwan B., (2023). Simulation of nanofluid minro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network. Energ Reports. 9: 239-247. doi: 10.1016/j.egyr.2022.10.412.
  • [19] Giannetti N., Redoo M.A., Sholahudin, Jeong J., Yamaguchi S., Saito K., Kim H. (2020). Prediction of two-phase flow distribu- tion in microchannel heat exchangers using artificial neural network. International Journal of Refrigeration. 111: 53-63. doi: 10.1016/j.ijrefrig.2019.11.028.
  • [20] Xie C., Yan G., Ma Q., Elmasry Y., Singh P. K., Algelany A.M., Wae-hayee M. (2022). Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using response surface methodology and artificial neural network. 39: 102445. doi: 10.1016/j.csite.2022.102445.
  • [21] Zhang T., Chen L., Wang J. (2023). Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm. Energy. 269: 126729. doi: 10.1016/j.ener- gy.2023.126729.
  • [22] Satyavada H., Baldi S. (2018). Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and es- timation. Energy.142: 121-129. doi: 10.1016/j.energy.2017.09.124.
  • [23] Seban R.A., McLaughlin E.F. (1963). Heat transfer in tube coils with laminar and turbulent flow. International Jour- nal of Heat and Mass Transfer. 6 : 387-395. doi:10.1016/0017- 9310(63)90100-5.
  • [24] EN 15502 -1:2012+A1:2015, (2015). Gas-fired heating boilers Part 1: General requirements and tests-TC109 (Issue February), European Committee for Standardization.
  • [25] Yılmaz, S., Kumlutaş, D., Yücekaya, U. A., Cumbul, A. Y. (2021). Prediction of the equilibrium compositions in the combus- tion products of a domestic boiler. Energy. 233 : 121-123. doi: 10.1016/j.energy.2021.121123.
  • [26] Cumbul A.Y., (2018). Evaluation of energy efficiency of a power-plant using energy analysis. (Msc), Dokuz Eylül Univer- sity, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGos- ter?key=hcgrYffRbz0Z44UJEuLtwQ0CunVOm65XkkDQY2Js- 7LjW7oYNRQDI9MV4BbWX-H3L.
  • [27] NASA report SP-3001, (accessed date: 22 June2018). https:// ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630013835. pdf
  • [28] Incropera, F.P., Dewitt, D.P. (1996). Fundamentals of Heat and Mass Transfer, John Wiley&Sons.
  • [29] Kreith K. (2000). The CrcHandbook of Thermal Engineering, Crc Press, Boca Raton.
  • [30] Wang. B.X. (2000). Heat Transfer Science and Technology, Hig- her Education Press.
APA AVCI H, KUMLUTAS D, Özer Ö, Yücekaya U (2023). Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. , 160 - 171. 10.26701/ems.1298839
Chicago AVCI HASAN,KUMLUTAS DILEK,Özer Özgün,Yücekaya Utku Alp Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. (2023): 160 - 171. 10.26701/ems.1298839
MLA AVCI HASAN,KUMLUTAS DILEK,Özer Özgün,Yücekaya Utku Alp Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. , 2023, ss.160 - 171. 10.26701/ems.1298839
AMA AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. . 2023; 160 - 171. 10.26701/ems.1298839
Vancouver AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. . 2023; 160 - 171. 10.26701/ems.1298839
IEEE AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U "Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers." , ss.160 - 171, 2023. 10.26701/ems.1298839
ISNAD AVCI, HASAN vd. "Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers". (2023), 160-171. https://doi.org/10.26701/ems.1298839
APA AVCI H, KUMLUTAS D, Özer Ö, Yücekaya U (2023). Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science, 7(3), 160 - 171. 10.26701/ems.1298839
Chicago AVCI HASAN,KUMLUTAS DILEK,Özer Özgün,Yücekaya Utku Alp Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science 7, no.3 (2023): 160 - 171. 10.26701/ems.1298839
MLA AVCI HASAN,KUMLUTAS DILEK,Özer Özgün,Yücekaya Utku Alp Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science, vol.7, no.3, 2023, ss.160 - 171. 10.26701/ems.1298839
AMA AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science. 2023; 7(3): 160 - 171. 10.26701/ems.1298839
Vancouver AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers. European Mechanical Science. 2023; 7(3): 160 - 171. 10.26701/ems.1298839
IEEE AVCI H,KUMLUTAS D,Özer Ö,Yücekaya U "Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers." European Mechanical Science, 7, ss.160 - 171, 2023. 10.26701/ems.1298839
ISNAD AVCI, HASAN vd. "Optimisation of design parameters of the finned tube heat exchanger by numerical simulations and artificial neural networks for the condensing wall hang boilers". European Mechanical Science 7/3 (2023), 160-171. https://doi.org/10.26701/ems.1298839