Yıl: 2023 Cilt: 38 Sayı: 4 Sayfa Aralığı: 2055 - 2067 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.981836 İndeks Tarihi: 29-09-2023

Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi

Öz:
Kök, sap, saman, yaprak ve kabuk vb. gibi lignoselülozik hammadde kaynaklarından elde edilebilen nanoselüloz, kullanım potansiyeli ile orman ürünleri alanında önemli bir malzemedir. Tarımsal faaliyetler sonucu ortaya çıkar ve sahip olduğu fiziksel, kimyasal ve morfolojik özellikleri ile kullanıldığı nihai ürünlere olumlu etkiler sağlar. Literatürde nanoselüloz üretim yöntemi olarak sıklıkla kullanılan alkali veya asidik üretim yöntemine nazaran enzimatik hidroliz yöntemi daha az araştırılmıştır. Genel olarak, enzimatik hidroliz yoluyla nanoselüloz üretim süreçleri ile selüloz nanofibriller (CNF) üretilirken, enzimatik olmayan işlemler ile kristal nanoselülozlar (CNC) üretilmektedir. Bu çalışmada ilk kez buğday sapından elde edilen soda-NaBH4 ağartılmış kağıt hamuru liflerine iki farklı enzimatik ön muamele (hemiselülaz Pulpzyme HC 2500 ve selülaz Celluclast 1.5 L ticari enzimleri) ve ardından gerçekleştirilen homojenizasyon işlemi ile CNF elde edilmiş, homojenizasyon işlemi sonrası elde edilen CNF’ nin kimyasal, morfolojik, termal ve reolojik özelliklerindeki değişimler incelenmiştir. Enzimatik ön muamele işlemleri sonrasında gerçekleştirilen HPLC analizleri; artan enzim konsantrasyonlarında yapıdan daha fazla miktarda karbonhidratın uzaklaştırıldığını ve yüksek basınç altında gerçekleştirilen homojenizasyon sonrasında alınan SEM görüntüleri liflerin CNF üretiminde homojen bir şekilde nano boyuta indirgendiğini (ortalama 20-50 nm lif çapı) ortaya koymuştur.
Anahtar Kelime: buğday sapı ön muamele enzimatik hidroliz cnf homojenizasyon

The effect of different enzymatic pretreatment processes on the production of nanocellulose from wheat straw

Öz:
Nanocellulose is an important material in the field of forest products with its application potential which can be obtained from lignocellulosic raw materials such as roots, stems, straw, leaves and bark. It emerges as a result of agricultural activities and gives positive effects on the final products obtained due to its physical, chemical, and morphological properties. Compared to the alkaline or acidic production method, which is frequently used as a nanocellulose production method in the literature, the enzymatic hydrolysis method has been less studied. In general, cellulose nanofibrils (CNF) are produced by nanocellulose production processes via enzymatic hydrolysis, while crystalline nanocelluloses (CNC) are produced by non-enzymatic processes. In this study, CNF was obtained by two different enzymatic pretreatments (hemicellulase Pulpzyme HC 2500 and cellulase Celluclast 1.5 L commercial enzymes) followed by homogenization on soda-NaBH4 bleached pulp fibers obtained from wheat straw for the first time and the changes in chemical, morphological, thermal, and rheological properties the CNF obtained after the homogenization process were investigated. HPLC analyses performed after enzymatic pretreatment showed that more carbohydrates were removed from the structure at increasing enzyme concentrations, and SEM images taken after homogenization under high pressure showed that the fibers were homogeneously reduced to nano size (average fiber diameter of 20-50 nm) in CNF production.
Anahtar Kelime: Wheat straw Pretreatment Enzymatic hydrolysis CNF Homogenization

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Yıldırım N., Nanoteknoloji ve Geleceğin Çevreci Polimeri Nanoselüloz, Ormancılık Araştırma Dergisi, 5 (2), 185-195, 2018. 2. Güven O., Monteiro SN., Mourac EAB., Drelich JW., Re-emerging field of lignocellulosic fiber-polymer composites and ionizing radiation technology in their formulation, Polymer Reviews, 56 (4), 702-736, 2016.
  • 3. GEA Company. Doğa, yenilenemeyen malzemelere yeşil bir alternatif sunmaktadır. https://www.gea.com/tr/stories/nanocellulose.jsp. Yayın tarihi Aralık 13, 2016. Erişim tarihi Aralık 13, 2016.
  • 4. Bilek S., Yalçın Melikoğlu A., Cesur S., Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları, Akademik Gıda, 17 (1), 140-148, 2019.
  • 5. Ribeiro R.S., Pohlmann B.C., Calado V., Bojorge N., Pereira N., Production of nanocellulose by enzymatic hydrolysis: Trends and challenges, Engineering in Life Sciences, 19, 279-291, 2019.
  • 6. Poyraz B., Arslan R., Akıncı A., Tozluoğlu Modifiye nanoselülozun kimyasal ve morfolojik analizi, Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 1–9, 2018.
  • 7. Tozluoğlu A., Poyraz B., Candan Z., Yavuz M., Arslan R., Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp, Bulletin of Materials Science, 40 (4), 699–710, 2017.
  • 8. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., NREL Biomass Program: Determination of Structural Carbohydrates and Lignin in Biomass, Biomass Analysis Technology Team, Laboratory Analytical Procedure 2004, Department of Energy, A.B.D., 2004.
  • 9. Moberg T., Sahlin K., Yao K., Geng S., Westman G., Zhou Q., Oksman K., Rigdahl M., Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24 (6), 2499–2510, 2017.
  • 10. Barroca M. J. M. C., Marques P. J. T. S., Seco I. M., Castro J. A. A. M., Selectivity Studies of Oxygen and Chlorine Dioxide in the Pre- Delignification Stages of a Hardwood Pulp Bleaching Plant, Ind. Eng. Chem. Res., 40, 5680-5685, 2001.
  • 11. Linde M., Jakobson E-L., Galbe M., Zacchi G., Steam Pretreatment of Dilute H2SO4-Impregnated Wheat Straw and SSF With Low Yeast and Enzyme Loadings for Bioethanol Production, Biomass Bioenergy, 32, 326-332, 2008.
  • 12. Rajan K., Carrier D.J., Effect of Dilute Acid Pretreatment Conditions and Washing on the Production of Inhibitors and on Recovery of Sugars During Wheat Straw Enzymatic Hydrolysis, Biomass and Bioenergy, 62, 222-227, 2014.
  • 13. Marcos M., Garcia-Cubero M.T., Benito G.G., Coca M., Bolado S., Lucas S., Optimization of the Enzymatic Hydrolysis Conditions of Steam-Exploded Wheat Straw for Maximum Glucose and Xylose Recovery, Journal of Chemical Technology and Biotechnology, 88, 237-246, 2013.
  • 14. Fu D., Mazza G., Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid, Bioresources Technology, 102, 8003-8010, 2011.
  • 15. Kolakovic R., Nanofibrillar Cellulose in Drug Delivery, Doctorate Thesis, Division of Pharmaceutical Technology Faculty of Pharmacy, University of Helsinki, Finland, 2013.
  • 16. Pääkko M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Österberg M., Ruokolainen J., Laine J., Larsson P. T., Ikkala O., Lindström T., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, 8 (6), 1934-1941, 2007.
  • 17. Qiao H., Zhou Y., Yu F., Wang E., Min Y., Huang Q., Pang L., Ma T., Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals, Chemosphere, 141, 297-303, 2015.
  • 18. Liang C. Y., Marchessault R. H., Infrared spectra of crystalline polysaccharides. I. hydrogen bonds in native celluloses, Journal of Polymer Science, 37, 385- 395, 1959.
  • 19. Zhu W., Liu L., Liao Q., Chen X., Qian Z., Shen J., Liang J., Yao J., Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation, Cellulose, 23, 3785–3797, 2016.
  • 20. Salama A., Shukry N., El-Sakhawy M., Carboxymethyl cellulose-g- poly (2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal, International Journal of Biological Macromolecules, 73, 72–75, 2015.
  • 21. [21] Chan C. H,, Chia C. H., Zakaria S., Sajab M. S., Chin S. X., Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue, RSC Advances, 5, 18204–18212, 2015.
  • 22. Jin L, Li W., Xu Q., Sun Q., Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes, Cellulose, 22, 2443–2456, 2015.
  • 23. Yu H. Y., Zhang D. Z., Lu F. F., Yao J., New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants, ACS Sustainable Chemistry&Engineering, 4, 2632–2643, 2016.
  • 24. Jin L., Sun Q., Xu Q., Xu Y., Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine, Bioresource Technology, 197, 348–355, 2015.
  • 25. Pei A., Butchosa N., Berglund L. A., Zhou Q., Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes, Soft Matter, 9, 2047–2055, 2013.
  • 26. Chan H. C., Chia C. H., Zakaria S., Ahmad I., Dufresne A., Production and Characterisation of Cellulose and Nano-Crystalline Cellulose from Kenaf Core Wood, Bioresources, 8 (1), 786-794, 2013.
  • 27. Tozluoğlu A., Poyraz B., Candan Z., Examining The Efficiency of Mechanic/Enzymatic Pretreatments in Micro/Nanofibrillated Cellulose Production, Maderas, 20 (1), 67 – 84, 2018.
  • 28. Abraham E., Deepa B., Pothen L. A., Cintil J., Thomas S., John M. J., Anandjiwala R., Narine S. S., Environmental Friendly Method for the Extraction of Coir Fibre And Isolation of Nanofibre, Carbohydrate Polymers, 92 (2), 1477-1483, 2013.
  • 29. Poletto M., Pistor V., Zattera A. J., Structural Characteristics and Thermal Properties of Native Cellulose, Cellulose - Fundamental Aspects, Editors: Van De Ven, T., Godbout, L., InTech, Rijeka, Croatia, 2013.
  • 30. VanderHart D.L., Atalla R.H., Studies of Microstructure in Native Celluloses Using Solid-state 13C NMR, Macromolecules, 17, 1465- 1472, 1984.
  • 31. Wang Y., Wei X., Li J., Wang F., Wang Q., Zhang Y., Kong L., Homogeneous Isolation of Nanocellulose From Eucalyptus Pulp By High Pressure Homogenization, Industrial Crops & Products, 104, 237- 241, 2017.
  • 32. Mariño M., Silva L. L. D., Durán N., Tasic L., Enhanced Materials from Nature: Nanocellulose from Citrus Waste, Molecules, 20, 5908- 5923, 2015.
  • 33. Zimmermann T., Pöhler E., Geiger T., Cellulose Fibrils for Polymer Reinforcement, Adv. Eng. Material, 6 (9), 754–761, 2004.
  • 34. Taniguchi T., Okamura K., New Films Produced from Microfibrillated Natural Fibers, Polymer Int., 47 (3), 291-294, 1998.
  • 35. Zimmermann T., Bordeanu N., Strub E., Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential, Carbohydrate Polymers, 79, 1086-1093, 2010.
  • 36. Ankerfors M., Lindström T., Henriksson G., Method for the Manufacture of Microfibrillated Cellulose, US Pat. 20090221812 A1, 2009.
  • 37. Ciolacu D., Ciolacu, F., Popa V. I., Amorphous Cellulose–Structure and Characterization, Cellulose Chem. Technol., 45 (1-2), 13-21, 2011.
  • 38. Draman S.F.S., Daik R., Latif F.A., El-Sheikh S.M., Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba pentandra L.)- Based Cellulose, BioResources, 9 (1), 8-23, 2014.
  • 39. Hosoya T., Sakaki S., Levoglucosan Formation from Crystalline Cellulose: Importance of a Hydrogen Bonding Network in the Reaction, ChemSusChem, 6, 2356-2368, 2013.
  • 40. Ludueña L., Fasce D., Alvarez V.A., Stefani P.M., Nanocellulose from Rice Husk Following Alkaline Treatment to Remove Silica, BioResources, 6, 1440-1453, 2011.
  • 41. Thomas M.G., Abraham E., Jyotishkumar P., Maria H.J., Pothen L.A., Thomas S., Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. Int. J. Biol. Macromol., 81, 768-777, 2015.
  • 42. Dimic-Misic K., Gane P. A. C., Paltakari J., Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment- coating formulations, Ind. Eng. Chem. Res., 52, 16066−16083, 2013.
  • 43. Bercea M., Navard P., Shear Dynamics of Aqueous Suspensions of Cellulose Whiskers, Macromolecules, 33, 6011-6016, 2000.
  • 44. Furtado M. R., Carvalho C. W. P., Magalha ̃ es W. L. E., Rossi A. L., Tonon R. V., Characterization of spray-dried nanofibrillated cellulose and effect of different homogenization methods on the stability and rheological properties of the reconstituted suspension, Cellulose, 28, 207-221, 2021.
APA Sertkaya S, Arslan R, TOZLUOĞLU A, Fidan H, Erol O, ÜNAL H, Candan Z (2023). Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. , 2055 - 2067. 10.17341/gazimmfd.981836
Chicago Sertkaya Selva,Arslan Recai,TOZLUOĞLU Ayhan,Fidan Hakan,Erol Ozlem,ÜNAL HALIL IBRAHIM,Candan Zeki Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. (2023): 2055 - 2067. 10.17341/gazimmfd.981836
MLA Sertkaya Selva,Arslan Recai,TOZLUOĞLU Ayhan,Fidan Hakan,Erol Ozlem,ÜNAL HALIL IBRAHIM,Candan Zeki Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. , 2023, ss.2055 - 2067. 10.17341/gazimmfd.981836
AMA Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. . 2023; 2055 - 2067. 10.17341/gazimmfd.981836
Vancouver Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. . 2023; 2055 - 2067. 10.17341/gazimmfd.981836
IEEE Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z "Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi." , ss.2055 - 2067, 2023. 10.17341/gazimmfd.981836
ISNAD Sertkaya, Selva vd. "Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi". (2023), 2055-2067. https://doi.org/10.17341/gazimmfd.981836
APA Sertkaya S, Arslan R, TOZLUOĞLU A, Fidan H, Erol O, ÜNAL H, Candan Z (2023). Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2055 - 2067. 10.17341/gazimmfd.981836
Chicago Sertkaya Selva,Arslan Recai,TOZLUOĞLU Ayhan,Fidan Hakan,Erol Ozlem,ÜNAL HALIL IBRAHIM,Candan Zeki Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no.4 (2023): 2055 - 2067. 10.17341/gazimmfd.981836
MLA Sertkaya Selva,Arslan Recai,TOZLUOĞLU Ayhan,Fidan Hakan,Erol Ozlem,ÜNAL HALIL IBRAHIM,Candan Zeki Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.38, no.4, 2023, ss.2055 - 2067. 10.17341/gazimmfd.981836
AMA Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(4): 2055 - 2067. 10.17341/gazimmfd.981836
Vancouver Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(4): 2055 - 2067. 10.17341/gazimmfd.981836
IEEE Sertkaya S,Arslan R,TOZLUOĞLU A,Fidan H,Erol O,ÜNAL H,Candan Z "Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38, ss.2055 - 2067, 2023. 10.17341/gazimmfd.981836
ISNAD Sertkaya, Selva vd. "Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (2023), 2055-2067. https://doi.org/10.17341/gazimmfd.981836