Yıl: 2023 Cilt: 38 Sayı: 4 Sayfa Aralığı: 2069 - 2084 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.1069164 İndeks Tarihi: 29-09-2023

Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi

Öz:
Bu çalışmada, iklim değişikliğinin eğitim binası enerji tüketimi ve ısıl konforu üzerindeki etkileri incelenmiş ve pencere parametrelerine dayalı pasif iyileştirme senaryolarının etkinliği makine öğrenmesi ve istatistiksel analizler ile değerlendirilmiştir. Araştırma bina simülasyonlarına dayalı, dört aşamalı bir yaklaşıma dayanmıştır: (i) iklim değişikliği senaryosu ile modifiye edilmiş iklim veri setlerinin oluşturulması ve analizi, (ii) mevcut bina üzerinde iklim değişikliği etki analizi, (iii) iyileştirme senaryolarının karşılaştırmalı analizi, (iv) makine öğrenmesine dayalı tahmin modelleri analizi. Örnek vaka olarak Ankara'da mevcut bir ortaokul binası olarak seçilmiştir. Farklı pencere parametreleriyle, olası 2025 iyileştirme senaryosu parametrik olarak modellenmiştir. Simülasyonlarla üretilen veri betimsel istatistik yöntemleriyle incelenmiş, verinin bir alt kümesi ile Rastgele Orman (RO) tahmin modelleri eğitilmiştir. Parametrelerin öznitelik önemleri RO modelleri 10-kat çapraz doğrulama yöntemiyle hesaplanmış ve test edilenler arasında pencere SHGC değerinin en kritik parametre olduğu görülmüştür. RO modelleriyle yapılan performans tahminleri gerçek değerlerinden ortalama %2 sapmış ve yüksek tahmin kapasitesi göstermiştir. İyileştirme senaryoları ile toplam enerji tüketiminde %50'ye varan azalmalara ve iç mekan ısıl konforunda önemli iyileşmelere ulaşılmıştır. Sonuçlar mevcut eğitim binalarda pencere parametrelerinin seçimin bina enerji performansına etkisinin büyük olduğunu doğru vurgulamakta, binaların iklim değişikliğine adaptasyonu süreçlerinde makine öğrenmesinin etkin bir şekilde kullanılabileceğini göstermektedir. Kullanılan yöntem farklı bina parametrelerini ve teknolojilerini kapsayacak şekilde genişletilebilir.
Anahtar Kelime: Makine öğrenmesi iklim değişikliği bina enerji verimliliği retrofit ısıl konfor

Machine learning based evaluation of window parameters on building energy performance and occupant thermal comfort under climate change

Öz:
In this study, the effects of climate change on the energy consumption and thermal comfort of the education building were examined and the effectiveness of passive improvement scenarios based on window parameters was evaluated by machine learning and statistical analysis. The research was based on a four-stage approach based on building simulations: (i) creation and analysis of climate change scenario-modified climate datasets, (ii) climate change impact analysis on existing building, (iii) comparative analysis of improvement scenarios, and (iv) analysis of predictive models based on machine learning. An existing secondary school building in Ankara was chosen as a case study for the evaluation of the selected performance indicators. 2025 scenarios were parametrically modeled with varying window parameters. After analyzing the complete dataset generated from performance simulations with descriptive statistics, Random Forest (RF) prediction models are trained with a subset of the data for each performance indicator. For each performance indicator, the feature importance of fine-tuned RF models was calculated with 10-fold cross-validation method, and it was seen that the window SHGC value was the most critical parameter among the tested variables. Performance predictions with RF models deviate 2% on average from their actual values and imply high predictive capacity. Moreover, with the retrofit scenarios, total energy consumption showed a reduction of up to 50%, whereas a significant improvement in indoor thermal comfort was observed. The results emphasize that the right selection of window parameters in existing educational buildings has a great effect on building energy performance. The results show that machine learning can be used effectively in the adaptation processes of buildings to climate change. The method used can be extended to cover different building parameters and technologies.
Anahtar Kelime: Machine learning Climate Change Building energy efficiency Thermal comfort Retrofit

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. NASA, Global Climate Change: Vital Signs of the Planet, 2021.
  • 2. Smith P.F., Architecture in a climate of change : A guide to sustainable design, Routledge, 2005.
  • 3. Altun M., Meral Akgül Ç., Akçamete A., Effect of envelope insulation on building heating energy requirement, cost and carbon footprint from a life cycle perspective, Journal of the Faculty of Engineering and Architecture of Gazi University, 35, 147-164 , 2020.
  • 4. Rode P., Burdett R., Soares Gonçalves J. C., Buildings: investing in energy and resource efficiency, Towards a green economy: pathways to sustainable development and poverty eradication, United Nations Environment Programme, 331-373, 2011.
  • 5. International Energy Agency, World Energy Outlook 2021, IEA, Paris, 2021.
  • 6. de Wilde P., Coley D., The implications of a changing climate for buildings, Build Environ, 55, 1-7 , 2012.
  • 7. Gürsel Dino I., Meral Akgül Ç., Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort, Renew Energy, 141, 828-846 , 2019.
  • 8. IEA, The Future of Cooling: Opportunities for energy-efficient air conditioning, 2018.
  • 9. Meral Akgül Ç., Gürsel Dino İ., Climate change impact assessment in residential buildings utilizing RCP4.5 and RCP8.5 scenarios, Journal of the Faculty of Engineering and Architecture of Gazi University, 3, 1665-1683 , 2020.
  • 10. Tamer T., Gürsel Dino I., Meral Akgül C., Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey, Renewable and Sustainable Energy Reviews, 162, 112396 , 2022.
  • 11. Grynning S., Gustavsen A., Time B., Jelle B.P., Windows in the buildings of tomorrow: Energy losers or energy gainers?, Energy Build, 61, 185-192 , 2013.
  • 12. Cuce E., Riffat S.B., A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews, 41, 695-714 , 2015.
  • 13. Inanici M.N., Demirbilek F.N., Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey, Build Environ, 35, 41-52 , 2000.
  • 14. Amaral A.R., Rodrigues E., Gaspar A.R., Gomes Á., A thermal performance parametric study of window type, orientation, size and shadowing effect, Sustain Cities Soc, 26, 456-465 , 2016.
  • 15. Gürsel Dı̇no İ., Binalarda Güneş Kontrol Yöntemlerinin Optimizasyon Temelli Performans Değerlendirilmesi, GU J Sci, Part C, 5 (3), 71-87 , 2017.
  • 16. Yildiz Y., Özbalta T.G., Durmuş Arsan Z., Impact of Window-to-Wall Surface Area for Different Window Glass Types and Wall Orientations on Building Energy Performance: A Case Study for a School Building Located in Izmir, Turkey, MEGARON / Yıldız Technical University, Faculty of Architecture E-Journal, 6, 30-38 , 2011.
  • 17. Bojić M., Yik F., Application of advanced glazing to high-rise residential buildings in Hong Kong, Build Environ, 42, 820-828 , 2007.
  • 18. Akkose G., Meral Akgul C., Gursel Dino I., Educational building retrofit under climate change and urban heat island effect, Journal of Building Engineering, 40, 102294 , 2021.
  • 19. Feng G., Chi D., Xu X., Dou B., Sun Y., Fu Y., Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings, Procedia Engineering, 205, 730-737, 2017.
  • 20. Kim S., Zadeh P.A., Staub-French S., Froese T., Cavka B.T., Assessment of the Impact of Window Size, Position and Orientation on Building Energy Load Using BIM, Procedia Engineering, 1424-1431, 2016.
  • 21. Singh M.C., Garg S.N., Jha R., Different glazing systems and their impact on human thermal comfort-Indian scenario, Build Environ, 43, 1596-1602 , 2008.
  • 22. Perez Y.V., Capeluto I.G., Climatic considerations in school building design in the hot-humid climate for reducing energy consumption, Appl Energy, 86, 340-348 , 2009.
  • 23. Allab Y., Pellegrino M., Guo X., Nefzaoui E., Kindinis A., Energy and comfort assessment in educational building: Case study in a French university campus, Energy Build, 143, 202-219 , 2017.
  • 24. Pérez-Lombard L., Ortiz J., Pout C., A review on buildings energy consumption information, Energy Build, 40, 394-398 , 2008.
  • 25. Zomorodian Z.S., Tahsildoost M., Hafezi M., Thermal comfort in educational buildings: A review article, Renewable and Sustainable Energy Reviews, 59, 895-906 , 2016.
  • 26. Katafygiotou M.C., Serghides D.K., Thermal comfort of a typical secondary school building in Cyprus, Sustain Cities Soc, 13, 303-312 , 2014.
  • 27. Ascione F., Bianco N., De Masi R.F., Mauro G.M., Vanoli G.P., Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance, Energy Build, 144, 303-319 , 2017.
  • 28. Tahsildoost M., Zomorodian Z.S., Energy retrofit techniques: An experimental study of two typical school buildings in Tehran, Energy Build, 104, 65-72 , 2015.
  • 29. Ascione F., Bianco N., De Masi R.F., De’Rossi F., Vanoli G.P., Energy retrofit of an educational building in the ancient center of Benevento. Feasibility study of energy savings and respect of the historical value, Energy Build, 95, 172-183 , 2015.
  • 30. Niemelä T, Kosonen R, Jokisalo J, Cost-optimal energy performance renovation measures of educational buildings in cold climate, Appl Energy, 183, 1005-1020 , 2016.
  • 31. de Wilde P., Tian W., Predicting the performance of an office under climate change: A study of metrics, sensitivity and zonal resolution, Energy Build, 42, 1674-1684 , 2010.
  • 32. Waddicor D.A., Fuentes E., Sisó L., Salom J., Favre B., Jiménez C., Azar M., Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy, Build Environ, 102, 13-25, 2016.
  • 33. Dolinar M., Vidrih B., Kajfež-Bogataj L., Medved S., Predicted changes in energy demands for heating and cooling due to climate change, Physics and Chemistry of the Earth, 35, 100-106 , 2010.
  • 34. Hamdy M., Hensen J.L.M., Ranking of dwelling types in terms of overheating risk and sensitivity to climate change, 14th International Conference of IBPSA - Building Simulation 2015, BS 2015, Conference Proceedings 15, 2142-2149 , 2015.
  • 35. van Hooff T., Blocken B., Hensen J.L.M., Timmermans H.J.P., Reprint of: On the predicted effectiveness of climate adaptation measures for residential buildings, Build Environ, 83, 142-158 , 2015.
  • 36. Guan L., The influence of internal load density on the energy and thermal performance of air-conditioned office buildings in the face of global warming, Archit Sci Rev, 58, 162-173 , 2015.
  • 37. Pierangioli L., Cellai G., Ferrise R., Trombi G., Bindi M., Effectiveness of passive measures against climate change: Case studies in Central Italy, Build Simul, 10, 459-479 , 2017.
  • 38. Cellura M., Francesco G., Longo S., Mistretta M., Tumminia G., Effect of Climate Change on Building Performance: the Role of Ventilative Cooling, International Building Performance Simulation Association (IBPSA) Conference, San Francisco, CA, 2017.
  • 39. Tian Z., Zhang X., Wei S., Du S., Shi X., A review of data-driven building performance analysis and design on big on-site building performance data, Journal of Building Engineering, 41, 2352-7102 , 2021.
  • 40. van den Brom P., Meijer A., Visscher H., Actual energy saving effects of thermal renovations in dwellings—longitudinal data analysis including building and occupant characteristics, Energy Build, 182, 251-263 , 2019.
  • 41. Fowlie M., Greenstone M., Wolfram C., Do energy efficiency investments deliver? Evidence from the Weatherization Assistance Program, Quarterly Journal of Economics, 133, 1597-1644 , 2018.
  • 42. Liang J., Qiu Y., James T., Ruddell B.L., Dalrymple M., Earl S., Castelazo A., Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix, J Environ Econ Manage, 92, 726-743 , 2018.
  • 43. Marasco D.E., Kontokosta C.E., Applications of machine learning methods to identifying and predicting building retrofit opportunities, Energy Build, 128, 431-441 , 2016.
  • 44. Thrampoulidis E., Mavromatidis G., Lucchi A., Orehounig K., A machine learning-based surrogate model to approximate optimal building retrofit solutions, Appl Energy, 281, 116024 , 2021.
  • 45. Wang J.C., A study on the energy performance of school buildings in Taiwan, Energy Build, 133, 810-822 , 2016.
  • 46. Ouf M.M., Issa M.H., Energy consumption analysis of school buildings in Manitoba, Canada, International Journal of Sustainable Built Environment, 6, 359-371 , 2017.
  • 47. Walter T., Sohn M.D., A regression-based approach to estimating retrofit savings using the Building Performance Database, Appl Energy, 179, 996-1005 , 2016.
  • 48. Hamilton I.G., Summerfield A.J., Shipworth D., Steadman J.P., Oreszczyn T., Lowe R.J., Energy efficiency uptake and energy savings in English houses: A cohort study, Energy Build, 118, 259-276 , 2016.
  • 49. Zhang L., Data-driven building energy modeling with feature selection and active learning for data predictive control, Energy Build, 252, 111436 , 2021.
  • 50. Tsanas A., Xifara A., Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools, Energy Build, 49, 560-567 , 2012.
  • 51. Roudsari M.S., Pak M., Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design, 13th International IBPSA Conference, Lyon, France, 3128-3135, 2013.
  • 52. Pedregosa F., Michel V., Grisel O., Blondel M., Prettenhofer P., Weiss R., Vanderplas J., Cournapeau D., Pedregosa F., Varoquaux G., Gramfort A., Thirion B., Grisel O., Dubourg V., Passos A., Brucher M., Perrot M., Duchesnay É., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830 , 2011.
  • 53. Belcher S.E., Hacker J.N., Powell D.S., Constructing design weather data for future climates, Building Services Engineering Research and Technology, 26, 49-61, 2005.
  • 54. Hensen J.L.M., Lamberts R., Building performance simulation for design and operation, Routledge, 2012.
  • 55. Hamdy M., Carlucci S., Hoes P.J., Hensen J.L.M., The impact of climate change on the overheating risk in dwellings—A Dutch case study, Build Environ, 122, 307-323 , 2017.
  • 56. ASHRAE, Standard 55-2010, Thermal environmental conditions for human occupancy, 2010.
  • 57. Amasyali K., El-Gohary N.M., A review of data-driven building energy consumption prediction studies, Renewable and Sustainable Energy Reviews, 81, 1192-1205 , 2018.
  • 58. Breiman .L., Friedman J.H., Olshen R.A., Stone C.J., Classification and Regression Trees, CRC, 1984.
  • 59. Kotsiantis S.B., Decision trees: A recent overview, Artif. Intell. Rev., 39, 261-283, 2013.
  • 60. Breiman L., Random Forests, Mach Learn ,45, 5-32 , 2001.
  • 61. Kohavi R., A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, 1995.
  • 62. ASHRAE, Standard 90.1-2013, Energy standard for buildings except low rise residential buildings, 2013.
  • 63. Wan K.K.W., Li D.H.W., Pan W., Lam J.C., Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications, Appl Energy, 97, 274-282 , 2012.
  • 64. Jenkins D.P., Singh H., Eames P.C., Interventions for large-scale carbon emission reductions in future UK offices, Energy Build, 41, 1374-1380 , 2009.
  • 65. Ecoinvent Centre, Ecoinvent Database, (2012).
  • 66. Atilgan B., Azapagic A., Assessing the environmental sustainability of electricity generation in Turkey on a life cycle basis, Energies, 9, 31, 2016.
  • 67. Ascione F., Bianco N., De Stasio C., Mauro G.M., Vanoli G.P., Multi- stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost- optimality, Appl Energy, 174, 37-68 , 2016.
  • 68. Salata F., Ciancio V., Dell’Olmo J., Golasi I., Palusci O., Coppi M., Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms, Appl Energy, 260, 114289, 2020.
  • 69. Rosso F., Ciancio V., Dell’Olmo J., Salata F., Multi-objective optimization of building retrofit in the Mediterranean climate by means of genetic algorithm application, Energy Build, 216, 109945, 2020.
  • 70. Pilechiha P., Mahdavinejad M., Pour Rahimian F., Carnemolla P., Seyedzadeh S., Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency, Appl Energy, 261, 114356, 2020.
APA Akköse Gözlet G, Duran A, Gürsel Dino I, Meral Akgul C (2023). Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. , 2069 - 2084. 10.17341/gazimmfd.1069164
Chicago Akköse Gözlet Gizem,Duran Ayça,Gürsel Dino Ipek,Meral Akgul Cagla Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. (2023): 2069 - 2084. 10.17341/gazimmfd.1069164
MLA Akköse Gözlet Gizem,Duran Ayça,Gürsel Dino Ipek,Meral Akgul Cagla Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. , 2023, ss.2069 - 2084. 10.17341/gazimmfd.1069164
AMA Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. . 2023; 2069 - 2084. 10.17341/gazimmfd.1069164
Vancouver Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. . 2023; 2069 - 2084. 10.17341/gazimmfd.1069164
IEEE Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C "Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi." , ss.2069 - 2084, 2023. 10.17341/gazimmfd.1069164
ISNAD Akköse Gözlet, Gizem vd. "Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi". (2023), 2069-2084. https://doi.org/10.17341/gazimmfd.1069164
APA Akköse Gözlet G, Duran A, Gürsel Dino I, Meral Akgul C (2023). Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2069 - 2084. 10.17341/gazimmfd.1069164
Chicago Akköse Gözlet Gizem,Duran Ayça,Gürsel Dino Ipek,Meral Akgul Cagla Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no.4 (2023): 2069 - 2084. 10.17341/gazimmfd.1069164
MLA Akköse Gözlet Gizem,Duran Ayça,Gürsel Dino Ipek,Meral Akgul Cagla Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.38, no.4, 2023, ss.2069 - 2084. 10.17341/gazimmfd.1069164
AMA Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(4): 2069 - 2084. 10.17341/gazimmfd.1069164
Vancouver Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(4): 2069 - 2084. 10.17341/gazimmfd.1069164
IEEE Akköse Gözlet G,Duran A,Gürsel Dino I,Meral Akgul C "Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38, ss.2069 - 2084, 2023. 10.17341/gazimmfd.1069164
ISNAD Akköse Gözlet, Gizem vd. "Makina öğrenmesi ile pencere parametrelerinin bina performansına etkisinin iklim değişikliği gözetilerek incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (2023), 2069-2084. https://doi.org/10.17341/gazimmfd.1069164