Yıl: 2023 Cilt: 9 Sayı: 3 Sayfa Aralığı: 670 - 687 Metin Dili: İngilizce DOI: 10.28979/jarnas.1186322 İndeks Tarihi: 29-09-2023

Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA

Öz:
Fluorescence imaging-assisted photodynamic therapy (PDT) allows accurate tumor visualization and potentially prevents long-term side effects of cancer. Therefore, the development of photosensitizers emitting light, particularly in the near-infrared region (NIR), is essential for enhancing the efficacy of cancer therapy. On this premise, the formation of a stabilized complex between an organic dye and a target macromolecule improves fluorescence efficiency. In this scope, we performed a detailed molecular dock-ing study of Donor (D)-Acceptor (A) or D-A-D type luminogens with two blood proteins; namely bovine serum albumin (BSA) and human serum albumin (HSA), which appeared as robust carriers of several pharmaceuticals against preliminary cancer diseases. Our results revealed that the binding scores of the Dn-An or Dn-An-Dn:BSA complexes ranged from -8.5 to -11.7 kcal/mol while Dn-An or Dn-An-Dn:HSA complexes showed scores varying from -8.4 to -10.5 kcal/mol. Subsequently, molecular dynamics simu-lations were also performed for the best-docked ligands: macromolecule complexes; namely D1A1D1:BSA and D1A1:HSA, to enlighten various structural parameters. Based on the predicted root-mean-square deviation (RMSD) values (on average), the D1A1D1:BSA complex was found to be 0.319 nm, while the D1A1:HSA complex was determined as 0.284 nm. In addition, the root-mean-square fluctuations (RMSF) analyses (on average) revealed that D1A1D1:BSA (0.152 nm) was slightly more flexible than D1A1:HSA (0.160 nm).
Anahtar Kelime: BSA HSA luminogens molecular docking molecular dynamics

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ajloo, D., Fazeli, S. M., & Amirani, F. J. (2013). Interaction of Cationic and Anionic Phthalocyanines with Adenosine Deaminase, Molecular Dynamics Simulation and Docking Studies. Computational Molecular Bioscience, 03(04), 81–93. https://doi.org/10.4236/cmb.2013.34010
  • Akdogan, Y., Reichenwallner, J., & Hinderberger, D. (2012). Evidence for Water-Tuned Structural Differences in Proteins: An Approach Emphasizing Variations in Local Hydrophilicity. PLoS ONE, 7(9), e45681. https://doi.org/10.1371/journal.pone.0045681
  • Avti, P., Chauhan, A., Shekhar, N., Prajapat, M., Sarma, P., Kaur, H., Bhattacharyya, A., Kumar, S., Prakash, A., Sharma, S., & Medhi, B. (2021). Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1922310
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Chakraborty, D., Musib, D., Saha, R., Das, A., Raza, M. K., Ramu, V., Chongdar, S., Sarkar, K., & Bhaumik, A. (2022). Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Materials Today Chemistry, 24, 100882. https://doi.org/10.1016/j.mtchem.2022.100882
  • Chandra, S., Qureshi, S., Chopra, D., Dwivedi, A., & Ray, R. S. (2022). Involvement of Type I and Type II Photodynamic Reactions in Photosensitization of Fragrance Ingredient 2 acetonaphthone. Photochemistry and Photobiology, 98(5), 1050–1058. https://doi.org/10.1111/php.13593
  • Cox, T. R. (2021). The matrix in cancer. Nature Reviews Cancer, 21(4), 217–238. https://doi.org/10.1038/s41568-020-00329-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
  • Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9, 205031212110343. https://doi.org/10.1177/20503121211034366
  • Deng, K., Li, C., Huang, S., Xing, B., Jin, D., Zeng, Q., Hou, Z., & Lin, J. (2017). Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small, 13(44), 1702299. https://doi.org/10.1002/smll.201702299
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5.0.8. GaussView, Version 5.0.8.
  • Dewaele, M., Maes, H., & Agostinis, P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy, 6(7), 838–854. https://doi.org/10.4161/auto.6.7.12113
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Escudero, A., Carrillo-Carrión, C., Castillejos, M. C., Romero-Ben, E., Rosales-Barrios, C., & Khiar, N. (2021). Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 5(10), 3788–3812. https://doi.org/10.1039/D0QM00922A
  • Fan, M., Xu, Z., Liu, M., Jiang, Y., Zheng, X., Yang, C., Law, W.-C., Ying, M., Wang, X., Shao, Y., Swihart, M. T., Xu, G., Yong, K.-T., & Tang, B. Z. (2021). Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics. Applied Physics Reviews, 8(4), 041328. https://doi.org/10.1063/5.0071142
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2010). Gaussian09 Revision D.01, Gaussian Inc. Wallingford CT. In Gaussian 09 Revision C.01.
  • He, S., Song, J., Qu, J., & Cheng, Z. (2018). Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chemical Society Reviews, 47(12), 4258–4278. https://doi.org/10.1039/C8CS00234G
  • Hishikawa, H., Kaibori, M., Tsuda, T., Matsui, K., Okumura, T., Ozeki, E., & Yoshii, K. (2019). Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosomes has antineoplastic effects for gallbladder cancer. Oncotarget, 10(54), 5622–5631. https://doi.org/10.18632/oncotarget.27193
  • Hong, G., Antaris, A. L., & Dai, H. (2017). Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 1(1), 0010. https://doi.org/10.1038/s41551-016-0010
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. Al, Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1761883
  • Li, Y., Liu, S., Ni, H., Zhang, H., Zhang, H., Chuah, C., Ma, C., Wong, K. S., Lam, J. W. Y., Kwok, R. T. K., Qian, J., Lu, X., & Tang, B. Z. (2020). ACQ to AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two Photon NIR Bioimaging. Angewandte Chemie International Edition, 59(31), 12822–12826. https://doi.org/10.1002/anie.202005785
  • Lin, H., Lin, Z., Zheng, K., Wang, C., Lin, L., Chen, J., & Song, J. (2021). Near Infrared II Nanomaterials for Fluorescence Imaging and Photodynamic Therapy. Advanced Optical Materials, 9(9), 2002177. https://doi.org/10.1002/adom.202002177
  • Lokhande, K. B., Ballav, S., Yadav, R. S., Swamy, K. V., & Basu, S. (2022). Probing intermolecular interactions and binding stability of kaempferol, quercetin and resveratrol derivatives with PPAR-γ: docking, molecular dynamics and MM/GBSA approach to reveal potent PPAR- γ agonist against cancer. Journal of Biomolecular Structure and Dynamics, 40(3), 971–981. https://doi.org/10.1080/07391102.2020.1820380
  • Mfouo-Tynga, I., & Abrahamse, H. (2015). Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy. International Journal of Molecular Sciences, 16(12), 10228–10241. https://doi.org/10.3390/ijms160510228
  • Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., Jemal, A., Kramer, J. L., & Siegel, R. L. (2019). Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians, 69(5), 363–385. https://doi.org/10.3322/caac.21565
  • Mishra, D., Maurya, R. R., Kumar, K., Munjal, N. S., Bahadur, V., Sharma, S., Singh, P., & Bahadur, I. (2021). Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: Docking and molecular dynamics simulation studies. Journal of Molecular Liquids, 335, 116185. https://doi.org/10.1016/j.molliq.2021.116185
  • Moriguchi, I., Hirono, S., Nakagome, I., & Hirano, H. (1994). Comparison of Reliability of log P Values for Drugs Calculated by Several Methods. Chemical and Pharmaceutical Bulletin, 42(4), 976–978. https://doi.org/10.1248/cpb.42.976
  • Rubtsova, N. I., Hart, M. C., Arroyo, A. D., Osharovich, S. A., Liebov, B. K., Miller, J., Yuan, M., Cochran, J. M., Chong, S., Yodh, A. G., Busch, T. M., Delikatny, E. J., Anikeeva, N., & Popov, A. V. (2021). NIR Fluorescent Imaging and Photodynamic Therapy with a Novel Theranostic Phospholipid Probe for Triple-Negative Breast Cancer Cells. Bioconjugate Chemistry, 32(8), 1852–1863. https://doi.org/10.1021/acs.bioconjchem.1c00295
  • Sun, Y., Lei, Z., & Ma, H. (2022). Twisted aggregation-induced emission luminogens (AIEgens) contribute to mechanochromism materials: a review. Journal of Materials Chemistry C. https://doi.org/10.1039/D2TC02512D
  • Surti, M., Patel, M., Adnan, M., Moin, A., Ashraf, S. A., Siddiqui, A. J., Snoussi, M., Deshpande, S., & Reddy, M. N. (2020). Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study. RSC Advances, 10(62), 37707–37720. https://doi.org/10.1039/D0RA06379G
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334
  • Wang, D., Lee, M. M. S., Xu, W., Shan, G., Zheng, X., Kwok, R. T. K., Lam, J. W. Y., Hu, X., & Tang, B. Z. (2019). Boosting Non Radiative Decay to Do Useful Work: Development of a Multi Modality Theranostic System from an AIEgen. Angewandte Chemie International Edition, 58(17), 5628–5632. https://doi.org/10.1002/anie.201900366
  • Wang, J., Zhang, L., & Li, Z. (2021). Aggregation Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Advanced Healthcare Materials, 10(24), 2101169. https://doi.org/10.1002/adhm.202101169
  • Xu, P., Kang, F., Yang, W., Zhang, M., Dang, R., Jiang, P., & Wang, J. (2020). Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for in vivo imaging. Nanoscale, 12(8), 5084–5090. https://doi.org/10.1039/C9NR09999A
  • Xu, S., Duan, Y., & Liu, B. (2020). Precise Molecular Design for High Performance Luminogens with Aggregation Induced Emission. Advanced Materials, 32(1), 1903530. https://doi.org/10.1002/adma.201903530
  • Xu, W., Wang, D., & Tang, B. Z. (2021). NIR II AIEgens: A Win–Win Integration towards Bioapplications. Angewandte Chemie, 133(14), 7552–7563. https://doi.org/10.1002/ange.202005899
APA Nalçakan H, Kurtay G (2023). Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. , 670 - 687. 10.28979/jarnas.1186322
Chicago Nalçakan Harun,Kurtay Gülbin Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. (2023): 670 - 687. 10.28979/jarnas.1186322
MLA Nalçakan Harun,Kurtay Gülbin Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. , 2023, ss.670 - 687. 10.28979/jarnas.1186322
AMA Nalçakan H,Kurtay G Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. . 2023; 670 - 687. 10.28979/jarnas.1186322
Vancouver Nalçakan H,Kurtay G Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. . 2023; 670 - 687. 10.28979/jarnas.1186322
IEEE Nalçakan H,Kurtay G "Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA." , ss.670 - 687, 2023. 10.28979/jarnas.1186322
ISNAD Nalçakan, Harun - Kurtay, Gülbin. "Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA". (2023), 670-687. https://doi.org/10.28979/jarnas.1186322
APA Nalçakan H, Kurtay G (2023). Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. Journal of advanced research in natural and applied sciences (Online), 9(3), 670 - 687. 10.28979/jarnas.1186322
Chicago Nalçakan Harun,Kurtay Gülbin Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. Journal of advanced research in natural and applied sciences (Online) 9, no.3 (2023): 670 - 687. 10.28979/jarnas.1186322
MLA Nalçakan Harun,Kurtay Gülbin Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. Journal of advanced research in natural and applied sciences (Online), vol.9, no.3, 2023, ss.670 - 687. 10.28979/jarnas.1186322
AMA Nalçakan H,Kurtay G Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. Journal of advanced research in natural and applied sciences (Online). 2023; 9(3): 670 - 687. 10.28979/jarnas.1186322
Vancouver Nalçakan H,Kurtay G Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA. Journal of advanced research in natural and applied sciences (Online). 2023; 9(3): 670 - 687. 10.28979/jarnas.1186322
IEEE Nalçakan H,Kurtay G "Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA." Journal of advanced research in natural and applied sciences (Online), 9, ss.670 - 687, 2023. 10.28979/jarnas.1186322
ISNAD Nalçakan, Harun - Kurtay, Gülbin. "Bridging Molecular Docking to Molecular Dynamics to Enlighten Recognition Processes of Tailored D-A/D-A-D Types' AIEgens with HSA/BSA". Journal of advanced research in natural and applied sciences (Online) 9/3 (2023), 670-687. https://doi.org/10.28979/jarnas.1186322