Yıl: 2023 Cilt: 9 Sayı: 3 Sayfa Aralığı: 688 - 696 Metin Dili: İngilizce DOI: 10.28979/jarnas.1162623 İndeks Tarihi: 29-09-2023

The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.

Öz:
The formation of non-hermaphroditic, i.e. male or female, flowers is a rare event in the plant kingdom. S. oleracea provides an ideal unisexual floral developmental system for studying the structural development of floral organs. These species forms non-hermaphroditic flowers; the pistil is fertile in the female flower, but the development of the stamens stops at an early phase and this organ atrophies and becomes functionless, while the male flowers form four fertile stamens, however there is not any trace of the pistil, it aborts at a much early stage. We searched for the presence of programmed cell death (PCD) in the abortive tissues during the ontogenetic development of these flowers. These results show curicial information on how the fertile sex organ in spinach differentiates and develops while arresting the development of the other aborted sex organ ; the presence of PCD occur in unisexual flower development in rhe very early stage and continue short time. We also found that stamen development in the female flower and pistil development in the male flower were subject to changes that did not result in large-scale structural changes. The PCD data obtained are the first study of spinach in the literature. This type of studies are shedding additional light on the sexual specialization hypothesis. Moreover, the ability to manipulate or control the flowering of the dioecious plant by simple means holds great potential, both from an economic aspect and to increase food production for an ever-growing human population
Anahtar Kelime: Spinach unisexuality flower ontogeny programmed cell death TUNEL

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ainsworth, C., Parker, J., & Buchanan-Wollaston, V. (1998). Sex determination in plants. Currient Topics in Development Biology, 38: 167-223. https://doi.org/10.1016/S0070-2153(08)60247-1
  • Aytürk, Ö., & Ünal, M. (2012). Structural Analysis of Reproductive Development in Staminate Flowers of Laurus nobilis L. Notulae Scientia Biologicae, 4(1), 31-43 https://doi.org/10.15835/nsb416383
  • Aytürk, Ö., Unal, M. (2016). Comparison of Female, Gall and Male Flower Development with Microscopic and Molecular Tecniques in Dioecious Ficus carica L. PhD, Marmara University, Istanbul, Turkey. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Bartoli, G., Forino, L.M.C., Durante, M., & Tagliasacchi, A.M. (2015). A lysigenic programmed cell death- dependent process shapes schizogenously formed aerenchyma in the stems of the waterweed Egeria densa. Annals of Botany, 116: 91-99 https://doi.org/10.1093/aob/mcv067
  • Bracale, M., Caporali, E., Galli, M.G., Longo, C., Marziani-Longo, G., Rossi, G., Spada , A., Coave, C., Falavigna, A., Raffaldi, F., Maestri, E., Restivo, F.M., & Tassi, F. (1991) Sex determination and differentiation in Asparagus officinalis L. Plant Sci. 80: 67 ± 77 https://doi.org/10.1016/0168- 9452(91)90273-B
  • Charlesworth, D., & Charlesworth, B. (1978). A model for the evolution of dioecy and gynodioecy. The American Naturalist, 112: 975-997 https://doi.org/10.1086/283342
  • Coimbra, S., Torrão, L., & Abreu, I. (2004) Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol. Biochem., 42, 537–541. https://doi.org/10.1016/j.plaphy.2004.05.004
  • DeLong, A., Calderon-Urrea, A., & Dellaporta, S.L. (1993). Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell ,74: 757 ± 7. https://doi.org/10.1016/0092-8674(93)90522-R
  • Di Stilio, V.S., Kramer, E.M., & Baum, D.A. (2005). Floral mads box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)-a new model for the study of dioecy. The Plant Journal, 41: 755-766 https://doi.org/10.1111/j.1365-313X.2005.02336.x
  • Diggle, P.K., Di Stilio, V.S., Gschwend, A.R., Golenberg, E.M., Moore, R.C., Russell, J.R.W., & Sinclair, J.P. (2011). Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet. 27, 368–376. https://doi.org/10.1016/j.tig.2011.05.003
  • Duana, T., Xiaofang, D., Shi, C., Zhonglai, L., & Zhongtao, Z., (2018). Evolution of sexual systems and growth habit in Mussaenda (Rubiaceae): Insights into the evolutionary pathways of dioecy. Molecular Phylogenetics and Evolution, 123: 113-122. https://doi.org/10.1016/j.ympev.2018.02.015
  • Durand, D., & Durand, A. (1991). Sex determination and reproductive organ differentiation in mercurialis. Plant science, 80, 49-65. https://doi.org/10.1016/0168-9452(91)90272-A
  • Grant, S., Hunkirchen, B., & Saedler, H. (1994). Developmental differences betweenmale and female flowers in the dioecious plant Silene Latifolia. Plant J. 6: 471 ± 480 https://doi.org/10.1046/j.1365- 313X.1994.6040471.x
  • Henry, I.M., Takashi, A., Ryutaro, T., & Luca, C.1. (2018). One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. Annual Review of Plant Biology, 69: 553-575. https://doi.org/10.1146/annurev-arplant-042817-040615
  • Huang, Y-T., Lowe, D.J., Churchman, G.J., Schipper, L.A., & Cursons, R. (2016). DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Applied Clay Science,120: 40-50. https://doi.org/10.1016/j.clay.2015.11.009
  • Michael, R., Robert ,L., Randall, J. M., & Jeffrey, D.K. (2018). Plant Mating Systems Often Vary Widely Among Populations. Frontiers in Ecology and Evolution, 6: 38 https://doi.org/10.3389/fevo.2018.0
  • Mohan Ram, H.Y., & Nath, R. (1964). The morphology and embryology of Cannabis sativa Linn. Phytomorphology, 14, 414-429.
  • Naeger, J., & Golenberg, E. (2016). Mode and tempo of sequence and floral evolution within the Anserineae. Plant Systematic Evolution, 302: 385-398. https://doi.org/10.1007/s00606-015-1269-z
  • Nawkar, G.M., Maibam, P., Park, J.H., Sahi, V.P., & Lee, S.Y. (2013). UV-Induced cell death in plants. International Journal of Molecular Sciences, 14: 1608-1628 https://doi.org/10.3390/ijms14011608
  • Ou, X.H., Li, S., Wang, Z.B., Li, M., & Quan, S. (2012). Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Human Reproduction, 27: 2130–2145. https://doi.org/10.1093/humrep/des137
  • Renner, S.S. (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal Botany, 101: 1588-1596. https://doi.org/10.3732/ajb.1400196
  • Rosa, J. (1925). Sex expression in spinach. Hilgardia, 1: 259-274 https://doi.10.3733/hilg.v01n12p259
  • Sather, D.N., York, A., Pobursky, K.J., & Golenberg, E.M. (2005). Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta, 222 (2): 284-92 https://doi.org/10.1007/s00425-005-1544-2
  • Sherry, R.A., Eckard, K.J., & Lord, E.M. (1993). Flower development in dioecious Spinacia oleracea (Chenopodiaceae). American Journal Botany, 80: 283-291 https://doi.org/10.1002/j.1537- 2197.1993.tb13801.x
  • Vardar, F., Aytürk, Ö., & Yanık, F. (2017). Programmed cell death evidence in wheat (Triticum aestivum L.) roots induced by aluminum oxide (Al2O3) nanoparticles. Caryologia, 70: (2), 112-119 https://doi.org/10.1080/00087114.2017.1286126
  • Wang, C. L., Wu, J., Xu, G. H., Gao, Y. B., & Chen, G. (2010). S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. Journal Cell Science, 123 (24): 4301–4309. https://doi.org/10.1242/jcs.075077
  • Zaitchik, B.F., Le Roux, L.G., & Kellogg, E.A. (2000) Development of male flowers in Zizania aquatica (North American wild-rice: Gramineae). International Journal of Plant Sciences 161 : 345 – 351. https://doi.org/10.1086/314268
APA Aytürk Ö, mutlu o, Karadeniz A (2023). The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. , 688 - 696. 10.28979/jarnas.1162623
Chicago Aytürk Özlem,mutlu ozal,Karadeniz Asuman The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. (2023): 688 - 696. 10.28979/jarnas.1162623
MLA Aytürk Özlem,mutlu ozal,Karadeniz Asuman The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. , 2023, ss.688 - 696. 10.28979/jarnas.1162623
AMA Aytürk Ö,mutlu o,Karadeniz A The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. . 2023; 688 - 696. 10.28979/jarnas.1162623
Vancouver Aytürk Ö,mutlu o,Karadeniz A The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. . 2023; 688 - 696. 10.28979/jarnas.1162623
IEEE Aytürk Ö,mutlu o,Karadeniz A "The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.." , ss.688 - 696, 2023. 10.28979/jarnas.1162623
ISNAD Aytürk, Özlem vd. "The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.". (2023), 688-696. https://doi.org/10.28979/jarnas.1162623
APA Aytürk Ö, mutlu o, Karadeniz A (2023). The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. Journal of advanced research in natural and applied sciences (Online), 9(3), 688 - 696. 10.28979/jarnas.1162623
Chicago Aytürk Özlem,mutlu ozal,Karadeniz Asuman The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. Journal of advanced research in natural and applied sciences (Online) 9, no.3 (2023): 688 - 696. 10.28979/jarnas.1162623
MLA Aytürk Özlem,mutlu ozal,Karadeniz Asuman The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. Journal of advanced research in natural and applied sciences (Online), vol.9, no.3, 2023, ss.688 - 696. 10.28979/jarnas.1162623
AMA Aytürk Ö,mutlu o,Karadeniz A The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. Journal of advanced research in natural and applied sciences (Online). 2023; 9(3): 688 - 696. 10.28979/jarnas.1162623
Vancouver Aytürk Ö,mutlu o,Karadeniz A The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.. Journal of advanced research in natural and applied sciences (Online). 2023; 9(3): 688 - 696. 10.28979/jarnas.1162623
IEEE Aytürk Ö,mutlu o,Karadeniz A "The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.." Journal of advanced research in natural and applied sciences (Online), 9, ss.688 - 696, 2023. 10.28979/jarnas.1162623
ISNAD Aytürk, Özlem vd. "The role of PCD in sexual dimorphism of dioecious Spinacia oleracea L.". Journal of advanced research in natural and applied sciences (Online) 9/3 (2023), 688-696. https://doi.org/10.28979/jarnas.1162623