Yıl: 2023 Cilt: 13 Sayı: 3 Sayfa Aralığı: 1937 - 1945 Metin Dili: Türkçe DOI: 10.21597/jist.1264352 İndeks Tarihi: 02-10-2023

Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri

Öz:
Askorbik asit ve CTAC yardımı ile ıslak kimyasal yöntem kullanılarak Cu nanoparçacıkların sentezi başarılı bir şekilde gerçekleştirildi. Elektron mikroskobu ile morfolojileri karakterize edilen nanoparçacıkların 578 nm civarında bir absorbans bandına sahip olduğu görüldü. Polikaprolakton (PCL) içerisine homojen bir şekilde dağıtılan Cu nanoparçacıklar ile elektroeğirme yöntemiyle ortalama 624±216 nm çapında nanofiberler elde edildi. PCL/Cu nanofiberlerin Staphylococcus aureus ve Escherichia coli bakterileri ile Candida albicans türü üzerindeki antimikrobiyal aktiviteleri incelendi. Nanolifler, sahip oldukları yüksek yüzey alanı sayesinde kontrol örnekleri ile kıyaslanabilir bir antimikrobiyal zon çaplarına sahip oldukları görüldü. Elde edilen PCL/Cu nanofiberlerin açık yaralarda kullanılan yara bandı veya bandaj gibi malzemelere, tıbbi tekstil ürünlerine entegre edilerek antimikrobiyal aktivitenin engellenmesi açısında faydalı olacağı düşünülmektedir.
Anahtar Kelime: Cu nanoparçacık Polikaprolakton Staphylococcus aureus Escherichia coli Antimikrobiyal aktivite

Antimicrobial Activities of Polycaprolactone Nanofibers Containing Cu Nanoparticles

Öz:
The synthesis of Cu nanoparticles was carried out successfully using the wet chemical method with the help of ascorbic acid and CTAC. It was observed that the nanoparticles, whose morphology was characterized by electron microscopy, had an absorbance band of around 578 nm. Nanofibers with an average diameter of 624±216 nm were obtained by electrospinning with Cu nanoparticles homogeneously dispersed in polycaprolactone (PCL). Antimicrobial activities of PCL/Cu nanofibers on Staphylococcus aureus and Escherichia coli bacteria and Candida albicans were investigated. The nanofibers were found to have an antimicrobial zone diameter comparable to the control samples, thanks to their high surface area. The obtained PCL/Cu nanofibers are thought to be useful in preventing antimicrobial activity by integrating into materials such as band-aids or bandages used in open wounds, and medical textiles.
Anahtar Kelime: Cu nanoparticles Polycaprolactone Staphylococcus aureus Escherichia coli Antimicrobial activity

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, M. K., Menazea, A. A., Abdelghany, A. M. (2020). Blend Biopolymeric Nanofibrous Scaffolds of Cellulose Acetate/ε-Polycaprolactone Containing Metallic Nanoparticles Prepared by Laser Ablation for Wound Disinfection Applications. International Journal of Biological Macromolecules, 155, 636–44.
  • Anyaogu, K. C., Fedorov, A. V., Neckers, D. C. (2008). Synthesis, Characterization, and Antifouling Potential of Functionalized Copper Nanoparticles. Langmuir, 24(8), 4340–46.
  • Appelbaum, P. C. (2006). The Emergence of Vancomycin-Intermediate and Vancomycin-Resistant Staphylococcus Aureus. Clinical Microbiology and Infection, 12, 16–23.
  • Asadi, S., Kargar, M., Solhjoo, K., Najafi, A., Dalini, S. G. (2014). The Association of Virulence Determinants of Uropathogenic Escherichia Coli with Antibiotic Resistance. Jundishapur Journal of Microbiology, 7(5), 1–5.
  • Augustine, R., Malik, H. N., Singhal, D., K., Mukherjee, A., Malakar, D., Kalarikkal, N., Thomas, S. (2014). Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials with Antibacterial and Cell Adhesion Properties. Journal of Polymer Research, 21(3), 347.
  • Becerra, A., Llamazares, S. R., Carrasco, C., Visurraga, J., D., Riffo, C., Mondaca, M. A. (2013). Preparation of Poly(Vinyl Chloride)/Copper Nanocomposite Films with Reduced Bacterial Adhesion. High Performance Polymers, 25(1), 51–60.
  • Bhardwaj, N. ve Kundu , S. C. (2010). Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnology Advances, 28(3), 325–47.
  • Borkow, G., Zatcoff, R. C., Gabbay, J. (2009). Reducing the Risk of Skin Pathologies in Diabetics by Using Copper Impregnated Socks. Medical Hypotheses, 73(6), 883–86.
  • Cady, N. C., Behnke, J. L., Strickland, A. D. (2011). Copper-Based Nanostructured Coatings on Natural Cellulose: Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. Baumannii, and Mammalian Cell Biocompatibility in vitro. Advanced Functional Materials, 21(13), 2506–14.
  • Chatterjee, A. K., Sarkar, R. K., Chattopadhyay, A. P., Aich, P., Chakraborty, R. Basu, T. (2012). A Simple Robust Method for Synthesis of Metallic Copper Nanoparticles of High Antibacterial Potency against E. Coli. Nanotechnology, 23(8), 085103.
  • Cioffi, N., Torsi, L., Ditaranto, N., Sabbatini, L., Zambonin, P. G. (2004). Antifungal Activity of Polymer- Based Copper Nanocomposite Coatings. Applied Physics Letters, 85(12), 2417–19.
  • Din, M. I., Arshad, F., Hussain, Z., Mukhtar, M.. (2017). Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities. Nanoscale Research Letters, 12, 1-15.
  • Hajipour, M. J. Fromm, K. M., Ashkarran, A. A., Aberasturi, D. J., Larramendi, I., R., Rojo, T., Serpooshan, V., Parak, W. J., Mahmoudi, M. (2012). Antibacterial Properties of Nanoparticles. Trends in Biotechnology, 30(10), 499–511.
  • Henglein, A. (2000). Formation and Absorption Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu(CN)2. Journal of Physical Chemistry B, 104(6), 1206–11.
  • Jia, B., Mei, Y., Cheng, L., Zhou, J., Zhang, Z. (2012). Preparation of Copper Nanoparticles Coated Cellulose Films with Antibacterial Properties through One-Step Reduction. ACS Applied Materials and Interfaces, 4(6), 2897–2902.
  • Karagoz, S., Kiremitler, N. B., Sakir, M., Salem, S., Onses, M. S., Sahmetlioglu, E., Ceylan, A., Yilmaz, E. (2020). Synthesis of Ag and TiO2 Modified Polycaprolactone Electrospun Nanofibers (PCL/TiO2-Ag NFs) as a Multifunctional Material for SERS, Photocatalysis and Antibacterial Applications. Ecotoxicology and Environmental Safety, 188, 109856.
  • Karagoz, S., Kiremitler, N. B., Sarp, G., Pekdemir, S., Salem, S., Goksu, A. G., Onses, M. S., Sozdutmaz, I., Sahmetlioglu, E., Ozkara, E. S., Ceylan, A., Yilmaz, E. (2021). Antibacterial, Antiviral, and Self- Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials and Interfaces, 13(4), 5678–90.
  • Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W., Kang, Y. C., Kang, Y. S. (2006). Preparation and Characterization of the Antibacterial Cu Nanoparticle Formed on the Surface of SiO2 Nanoparticles. Journal of Physical Chemistry B, 110(49), 24923–28.
  • Anyaogu, K. C., Fedorov, A. V., Neckers, D. C. (2008). Synthesis, Characterization, and Antifouling Potential of Functionalized Copper Nanoparticles. Langmuir, 24(8), 4340–46.
  • Appelbaum, P. C. (2006). The Emergence of Vancomycin-Intermediate and Vancomycin-Resistant Staphylococcus Aureus. Clinical Microbiology and Infection, 12, 16–23.
  • Asadi, S., Kargar, M., Solhjoo, K., Najafi, A., Dalini, S. G. (2014). The Association of Virulence Determinants of Uropathogenic Escherichia Coli with Antibiotic Resistance. Jundishapur Journal of Microbiology, 7(5), 1–5.
  • Augustine, R., Malik, H. N., Singhal, D., K., Mukherjee, A., Malakar, D., Kalarikkal, N., Thomas, S. (2014). Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials with Antibacterial and Cell Adhesion Properties. Journal of Polymer Research, 21(3), 347.
  • Becerra, A., Llamazares, S. R., Carrasco, C., Visurraga, J., D., Riffo, C., Mondaca, M. A. (2013). Preparation of Poly(Vinyl Chloride)/Copper Nanocomposite Films with Reduced Bacterial Adhesion. High Performance Polymers, 25(1), 51–60.
  • Bhardwaj, N. ve Kundu , S. C. (2010). Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnology Advances, 28(3), 325–47.
  • Borkow, G., Zatcoff, R. C., Gabbay, J. (2009). Reducing the Risk of Skin Pathologies in Diabetics by Using Copper Impregnated Socks. Medical Hypotheses, 73(6), 883–86.
  • Cady, N. C., Behnke, J. L., Strickland, A. D. (2011). Copper-Based Nanostructured Coatings on Natural Cellulose: Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. Baumannii, and Mammalian Cell Biocompatibility in vitro. Advanced Functional Materials, 21(13), 2506–14.
  • Chatterjee, A. K., Sarkar, R. K., Chattopadhyay, A. P., Aich, P., Chakraborty, R. Basu, T. (2012). A Simple Robust Method for Synthesis of Metallic Copper Nanoparticles of High Antibacterial Potency against E. Coli. Nanotechnology, 23(8), 085103.
  • Cioffi, N., Torsi, L., Ditaranto, N., Sabbatini, L., Zambonin, P. G. (2004). Antifungal Activity of Polymer- Based Copper Nanocomposite Coatings. Applied Physics Letters, 85(12), 2417–19.
  • Din, M. I., Arshad, F., Hussain, Z., Mukhtar, M.. (2017). Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities. Nanoscale Research Letters, 12, 1-15.
  • Hajipour, M. J. Fromm, K. M., Ashkarran, A. A., Aberasturi, D. J., Larramendi, I., R., Rojo, T., Serpooshan, V., Parak, W. J., Mahmoudi, M. (2012). Antibacterial Properties of Nanoparticles. Trends in Biotechnology, 30(10), 499–511.
  • Henglein, A. (2000). Formation and Absorption Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu(CN)2. Journal of Physical Chemistry B, 104(6), 1206–11.
  • Jia, B., Mei, Y., Cheng, L., Zhou, J., Zhang, Z. (2012). Preparation of Copper Nanoparticles Coated Cellulose Films with Antibacterial Properties through One-Step Reduction. ACS Applied Materials and Interfaces, 4(6), 2897–2902.
  • Karagoz, S., Kiremitler, N. B., Sakir, M., Salem, S., Onses, M. S., Sahmetlioglu, E., Ceylan, A., Yilmaz, E. (2020). Synthesis of Ag and TiO2 Modified Polycaprolactone Electrospun Nanofibers (PCL/TiO2-Ag NFs) as a Multifunctional Material for SERS, Photocatalysis and Antibacterial Applications. Ecotoxicology and Environmental Safety, 188, 109856.
  • Karagoz, S., Kiremitler, N. B., Sarp, G., Pekdemir, S., Salem, S., Goksu, A. G., Onses, M. S., Sozdutmaz, I., Sahmetlioglu, E., Ozkara, E. S., Ceylan, A., Yilmaz, E. (2021). Antibacterial, Antiviral, and Self- Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials and Interfaces, 13(4), 5678–90.
  • Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W., Kang, Y. C., Kang, Y. S. (2006). Preparation and Characterization of the Antibacterial Cu Nanoparticle Formed on the Surface of SiO2 Nanoparticles. Journal of Physical Chemistry B, 110(49), 24923–28.
  • Komeily-Nia, Montazer, Z. M., Latifi, M. (2013). Synthesis of Nano Copper/Nylon Composite Using Ascorbic Acid and CTAB. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 167–75.
  • Korkmaz, I., Sakir, M., Sarp, G., Salem, S., Torun, I., Volodkin, D., Yavuz, E., Onses, M. S., Yilmaz, E. (2021). Fabrication of Superhydrophobic Ag@ZnO@Bi2WO6 Membrane Disc as Flexible and Photocatalytic Active Reusable SERS Substrate. Journal of Molecular Structure, 1223, 129258.
  • Mahapatra, S. S. ve Karak, N. (2009). Hyperbranched Polyamine/Cu Nanoparticles for Epoxy Thermoset. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 46(3), 296–303.
  • Mallick, S., Sharma, S., Banerjee, M., Ghosh, S. S., Chattopadhyay, A., Paul, A. (2012). Iodine-Stabilized Cu Nanoparticle Chitosan Composite for Antibacterial Applications. ACS Applied Materials and Interfaces, 4(3), 1313–23.
  • Mohandesnezhad, S., Soltanahmadi, Y. P., Alizadeh, E., Goodarzi, A., Davaran, S., Khatamian, M., Zarghami, N., Samiei, M., Aghazadeh, M., Akbarzadeh, A. (2020). In vitro Evaluation of Zeolite-NHA Blended PCL/PLA Nanofibers for Dental Tissue Engineering. Materials Chemistry and Physics, 252, 123152.
  • Morrier, J. J., Kaye, G. S., Nguyen, D., Rocca, J. P., Benon, J. B., Barsotti, O. (1998). Antimicrobial Activity of Amalgams, Alloys and Their Elements and Phases. Dental Materials, 14(2), 150–57.
  • Perelshtein, I., Applerot, G., Perkas, N., Sigl, E. W., Hasmann, A., Guebitz, G., Gedanken, A. (2009). CuO- Cotton Nanocomposite: Formation, Morphology, and Antibacterial Activity. Surface and Coatings Technology, 204(1–2), 54–57.
  • Pinto, R. J. B., Neves, M. C., Neto, C. P., Trindade, T. (2012). Growth and Chemical Stability of Copper Nanostructures on Cellulosic Fibers. European Journal of Inorganic Chemistry, 2012(31), 5043–49.
  • Qi, L., Xu, Z., Jiang, X., Li, Y., Wang, M. (2005). Cytotoxic Activities of Chitosan Nanoparticles and Copper- Loaded Nanoparticles. Bioorganic and Medicinal Chemistry Letters, 15(5), 1397–99.
  • Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., Hasan, M. M. (2010). Investigations into the Antibacterial Behavior of Copper Nanoparticles against Escherichia Coli. Annals of Microbiology, 60(1), 75–80.
  • Rajeshkumar, S., Menon, S., Kumar S., V., Tambuwala, M. M. Bakshi, H. A., Mehta, M., Satija, S., Gupta, G., Chellappan, D. K., Thangavelu, L., Dua, K. (2019). Antibacterial and Antioxidant Potential of Biosynthesized Copper Nanoparticles Mediated through Cissus Arnotiana Plant Extract. Journal of Photochemistry and Photobiology B: Biology, 197, 111531.
  • Rakhmetova, A. A., Alekseeva, T. P., Bogoslovskaya, O. A., Leipunskii, I. O., Ol’khovskaya, I. P., Zhigach, A. N., Glushchenko, N. N. (2010). Wound-Healing Properties of Copper Nanoparticles as a Function of Physicochemical Parameters. Nanotechnologies in Russia, 5(3), 271–76.
  • Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A. A. (2012). Synthesis and Antimicrobial Activity of Copper Nanoparticles. Materials Letters, 71, 114–16.
  • Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., Mukherji, S. (2008). Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomaterialia, 4(3), 707–16.
  • Sakir, M., Yilmaz, E., Onses, M. S. (2020). SERS-Active Hydrophobic Substrates Fabricated by Surface Growth of Cu Nanostructures. Microchemical Journal, 154, 104628.
  • Santo, C. E., Taudte, N., Nies, D. H., Grass, G. (2008). Contribution of Copper Ion Resistance to Survival of Escherichia Coli on Metallic Copper Surfaces. Applied and Environmental Microbiology, 74(4), 977–86.
  • Tamayo, L., Azocar, M., Kogan, M., Riveros, A., Paez, M. (2016). Copper-Polymer Nanocomposites: An Excellent and Cost-Effective Biocide for Use on Antibacterial Surfaces. Materials Science and Engineering C, 69, 1391–1409.
  • Zhao, Y., Zhu, J. J., Hong, J. M., Bian, N., Chen, H. Y. (2004). Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology. European Journal of Inorganic Chemistry, 2004(20), 4072–80.
  • Zhong, T., Oporto, G. S., Jaczynski, J., Jiang, C. (2015). Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications. BioMed Research International, 2015.
APA Sakir M, Kiremitler N, CEYLAN A (2023). Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. , 1937 - 1945. 10.21597/jist.1264352
Chicago Sakir Menekse,Kiremitler N. Burak,CEYLAN AHMET Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. (2023): 1937 - 1945. 10.21597/jist.1264352
MLA Sakir Menekse,Kiremitler N. Burak,CEYLAN AHMET Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. , 2023, ss.1937 - 1945. 10.21597/jist.1264352
AMA Sakir M,Kiremitler N,CEYLAN A Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. . 2023; 1937 - 1945. 10.21597/jist.1264352
Vancouver Sakir M,Kiremitler N,CEYLAN A Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. . 2023; 1937 - 1945. 10.21597/jist.1264352
IEEE Sakir M,Kiremitler N,CEYLAN A "Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri." , ss.1937 - 1945, 2023. 10.21597/jist.1264352
ISNAD Sakir, Menekse vd. "Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri". (2023), 1937-1945. https://doi.org/10.21597/jist.1264352
APA Sakir M, Kiremitler N, CEYLAN A (2023). Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3), 1937 - 1945. 10.21597/jist.1264352
Chicago Sakir Menekse,Kiremitler N. Burak,CEYLAN AHMET Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13, no.3 (2023): 1937 - 1945. 10.21597/jist.1264352
MLA Sakir Menekse,Kiremitler N. Burak,CEYLAN AHMET Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.13, no.3, 2023, ss.1937 - 1945. 10.21597/jist.1264352
AMA Sakir M,Kiremitler N,CEYLAN A Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 13(3): 1937 - 1945. 10.21597/jist.1264352
Vancouver Sakir M,Kiremitler N,CEYLAN A Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 13(3): 1937 - 1945. 10.21597/jist.1264352
IEEE Sakir M,Kiremitler N,CEYLAN A "Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri." Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13, ss.1937 - 1945, 2023. 10.21597/jist.1264352
ISNAD Sakir, Menekse vd. "Cu Nanoparçacık İçeren Polikaprolakton Nanofiberlerin Antimikrobiyal Aktiviteleri". Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13/3 (2023), 1937-1945. https://doi.org/10.21597/jist.1264352