Yıl: 2023 Cilt: 12 Sayı: 3 Sayfa Aralığı: 14 - 28 Metin Dili: İngilizce DOI: 10.55859/ijiss.1294840 İndeks Tarihi: 03-10-2023

High Dimensional Quantum Digital Signature Depending on Entanglement Swapping

Öz:
While a single qubit information can be carried with a single photon in 2−dimensional quantum technology, it is possible to carry more than one qubit information with a single photon in high-dimensional quantum technologies. The amount of qubit to be transported depends on the size of the system obtained in the high dimension. In other words, the more high-dimensional quantum structure it creates, the more qubit-carrying system is obtained. In this study, a high dimensional quantum digital signature(QDS) scheme is proposed for multi-partied by using entanglement swapping and super-dense coding. QDS, which is proposed as high- dimensional, allows more data and high-rate keys to be transferred. Security analysis of propesed QDS in high-dimensional show that the propablity of anyone obtaining information is much lower than in qubit states. Since all data(quantum and classic) in this protocol is instantly sent by using entanglement channels it is more resilient eavesdropping attacks. Today, developments in high- dimensional experimental studies show that the high-dimensional QDS proposed in this study can be implemented practically.
Anahtar Kelime: Quantum digital signature high dimension entanglement swapping superdence coding

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] D. Gottesman and I. Chuang, “Quantum digital signatures,” eprint arXiv:quant-ph/0105032, 2001. [Online]. Available: https://arxiv.org/pdf/quant-ph/0105032.pdf
  • [2] L. Lamport, “Constructing digital signatures from a one-way function,” Tech. Rep., 1979.
  • [3] X. Zhao, N. Zhou, H. Chen, and L. Gong, “Multiparty quantum key agreement protocol with entanglement swapping,” Interna- tional Journal of Theoretical Physics, vol. 58, no. 2, pp. 436– 450, 2019.
  • [4] C. Li, X. Chen, H. Li, Y. Yang, and J. Li, “Efficient quantum private comparison protocol based on the entanglement swap- ping between four-qubit cluster state and extended bell state,” Quantum Information Processing, vol. 18, no. 5, pp. 1–12, 2019.
  • [5] X. Cai, T. Wang, C. Wei, and F. Gao, “Cryptanalysis of multiparty quantum digital signatures,” Quantum Information Processing, vol. 18, no. 8, pp. 1–12, 2019.
  • [6] M. Zhang and H. Li, “Weak blind quantum signature protocol based on entanglement swapping,” Photon. Res., vol. 3, no. 6, pp. 324–328, 2015.
  • [7] W. Qu, Y. Zhang, H. Liu, T. Dou, J. Wang, Z. Li, S. Yang, and H. Ma, “Multi-party ring quantum digital signatures,” Journal of the Optical Society of America B Optical Physics, vol. 36, no. 5, pp. 1335–1341, 2019.
  • [8] H. Qin, W. K. S. Tang, and R. Tso, “Quantum (t, n) threshold group signature based on bell state,” Quantum Information Processing, vol. 19, no. 2, pp. 1–10, 2020.
  • [9] C. Weng, Y. Lu, R. Gao, Y. Xie, J. Gu, C. Li, B. Li, H. Yin, and Z. Chen, “Secure and practical multiparty quantum digital signatures,” Opt. Express, vol. 29, no. 17, pp. 27 661–27 673, 2021.
  • [10] P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nature Communications, vol. 3, pp. 1–8, 2012.
  • [11] T. Wang, X. Cai, Y. Ren, and R. Zhang, “Security of quantum digital signatures for classical messages,” Scientific Reports, vol. 5, pp. 1–4, 2015.
  • [12] H. Yin, Y. Fu, and Z. Chen, “Practical quantum digital signa- ture,” Physical Review A, vol. 93, no. 3, pp. 1–13, 2016.
  • [13] H. Yin, Y. Fu, H. Liu, Q. Tang, J. Wang, L. You, W. Zhang, S. Chen, Z. Wang, Q. Zhang, T. Chen, Z. Chen, and J. Pan, “Experimental quantum digital signature over 102 km,” Physical Review A, vol. 95, no. 3, pp. 1–10, 2017.
  • [14] H. Yin, W. Wang, Y. Tang, Q. Zhao, H. Liu, X. Sun, W. Zhang, H. Li, I. V. Puthoor, L. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Chen, and J. Pan, “Experimental measurement-device-independent quantum digi- tal signatures over a metropolitan network,” Physical Review A, vol. 95, no. 4, pp. 1–5, 2017.
  • [15] Y. Lu, X. Cao, C. Weng, J. Gu, Y. Xie, M. Zhou, H. Yin, and Z. Chen, “Efficient quantum digital signatures without symmetrization step,” Opt. Express, vol. 29, no. 7, pp. 10 162– 10 171, 2021.
  • [16] H. Yin, Y. Fu, C. Li, C. Weng, B. Li, J. Gu, Y. Lu, S. Huang, and Z. Chen, “Experimental quantum secure network with digital signatures and encryption,” National Science Review, vol. 10, no. 4, pp. 1–11, 2022.
  • [17] Y. Pelet, I. V. Puthoor, N. Venkatachalam, S. Wengerowsky, M. Lonˇcari ́c, S. P. Neumann, B. Liu, ˇZ. Samec, M. Stipˇcevi ́c, R. Ursin, E. Andersson, J. G. Rarity, D. Aktas, and S. K. Joshi, “Unconditionally secure digital signatures implemented in an eight-user quantum network,” New Journal of Physics, vol. 24, no. 9, pp. 1–11, 2022.
  • [18] G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L. Hol- lenberg, “Generation and verification of 27-qubit greenberger- horne-zeilinger states in a superconducting quantum computer,” Journal of Physics Communications, vol. 5, no. 9, pp. 1–18, 2021.
  • [19] I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, and D. Bacco, “Effi- cient time-bin encoding for practical high-dimensional quantum key distribution,” Phys. Rev. Applied, vol. 14, pp. 1–8, 2020.
  • [20] P. Imany, J. A. Jaramillo, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50- ghz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express, vol. 26, no. 2, pp. 1825–1840, 2018.
  • [21] S. Paesani, J. F. F. Bulmer, A. E. Jones, R. Santagati, and A. Laing, “Scheme for universal high-dimensional quantum computation with linear optics,” Physical Review Letters, vol. 126, no. 23, pp. 1–6, 2021.
  • [22] Y. Shen, I. Nape, X. Yang, X. Fu, M. Gong, D. Naidoo, and A. Forbes, “Creation and control of high-dimensional multi- partite classically entangled light,” Light: Science & Applica- tions, vol. 10, no. 1, pp. 1–10, 2021.
  • [23] V. Srivastav, N. H. Valencia, W. McCutcheon, S. Leedumrong- watthanakun, S. Designolle, R. Uola, N. Brunner, and M. Malik, “Quick quantum steering: Overcoming loss and noise with qudits,” Physical Review X, vol. 12, no. 4, pp. 1–13, 2022.
  • [24] Z. Hu and S. Kais, “The wave-particle duality of the qudit quantum space and the quantum wave gates,” arXiv e-prints, p. arXiv:2207.05213, 2022. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2207/2207.05213.pdf
  • [25] D. Cozzolino, B. Da Lio, D. Bacco, and L. Katsuo Oxenlowe, “High-dimensional quantum communication: benefits, progress, and future challenges,” arXiv e-prints, p. arXiv:1910.07220, 2019. [Online]. Available: https://arxiv.org/pdf/1910.07220.pdf
  • [26] J. Zhao and Y. Tian, “Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states,” Quantum Information Processing, vol. 16, no. 7, pp. 1–20, 2017.
  • [27] S. Lin, Y. Sun, X.-F. Liu, and Z.-Q. Yao, “Quantum private comparison protocol with d-dimensional bell states,” Quantum Information Processing, vol. 12, no. 1, pp. 559–568, 2013.
  • [28] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high- dimensional quantum computing,” Frontiers in Physics, vol. 8, pp. 1–24, 2020.
  • [29] E. Acar, S. G ̈und ̈uz, G. Akpınar, and I. Yılmaz, “High- dimensional grover multi-target search algorithm on cirq,” Eu- ropean Physical Journal Plus, vol. 137, no. 2, pp. 1–9, 2022.
  • [30] M. ̇Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors bell experiment via entanglement swap- ping,” Phys. Rev. Lett., vol. 71, pp. 4287–4290, 1993.
  • [31] F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn, and A. Zeilinger, “Generation of the complete four-dimensional bell basis,” Optica, vol. 4, no. 12, pp. 1–6, 2017.
  • [32] V. Srivastav, N. H. Valencia, W. McCutcheon, S. Leedumrong- watthanakun, S. Designolle, R. Uola, N. Brunner, and M. Malik, “Quick quantum steering: Overcoming loss and noise with qudits,” Physical Review X, vol. 12, no. 4, pp. 1–13, 2022.
  • [33] Y. Zhou, M. Mirhosseini, S. Oliver, J. Zhao, S. M. H. Rafsan- jani, M. P. J. Lavery, A. E. Willner, and R. W. Boyd, “Using all transverse degrees of freedom in quantum communications based on a generic mode sorter,” Optics Express, vol. 27, no. 7, pp. 10 383–10 394, 2019.
  • [34] B. Da Lio, D. Cozzolino, N. Biagi, Y. Ding, K. Rottwitt, A. Zavatta, D. Bacco, and L. K. Oxenlowe, “Path-encoded high- dimensional quantum communication over a 2-km multicore fiber,” npj Quantum Information, vol. 7, pp. 1–6, 2021.
  • [35] T. Feng, Q. Xu, L. Zhou, M. Luo, W. Zhang, and X. Zhou, “Quantum information transfer between a two-level and a four- level quantum systems,” Photon. Res., vol. 10, no. 12, pp. 2854– 2865, 2022.
  • [36] H. Iqbal and W. O. Krawec, “New security proof of a restricted high-dimensional qkd protocol,” arXiv e-prints, p. arXiv:2307.09560, 2023. [Online]. Available: https://arxiv.org/ pdf/2307.09560.pdf
  • [37] Y. Chi, J. Huang, Z. Zhang, J. Mao, Z. Zhou, X. Chen, C. Zhai, J. Bao, T. Dai, H. Yuan, M. Zhang, D. Dai, B. Tang, Y. Yang, Z. Li, Y. Ding, L. K. Oxenlowe, M. G. Thompson, J. L. O’Brien, Y. Li, Q. Gong, and J. Wang, “A programmable qudit-based quantum processor,” Nature Communications, vol. 13, pp. 1– 10, 2022.
APA Aktas A, Yılmaz I (2023). High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. , 14 - 28. 10.55859/ijiss.1294840
Chicago Aktas Arzu,Yılmaz Ihsan High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. (2023): 14 - 28. 10.55859/ijiss.1294840
MLA Aktas Arzu,Yılmaz Ihsan High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. , 2023, ss.14 - 28. 10.55859/ijiss.1294840
AMA Aktas A,Yılmaz I High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. . 2023; 14 - 28. 10.55859/ijiss.1294840
Vancouver Aktas A,Yılmaz I High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. . 2023; 14 - 28. 10.55859/ijiss.1294840
IEEE Aktas A,Yılmaz I "High Dimensional Quantum Digital Signature Depending on Entanglement Swapping." , ss.14 - 28, 2023. 10.55859/ijiss.1294840
ISNAD Aktas, Arzu - Yılmaz, Ihsan. "High Dimensional Quantum Digital Signature Depending on Entanglement Swapping". (2023), 14-28. https://doi.org/10.55859/ijiss.1294840
APA Aktas A, Yılmaz I (2023). High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE, 12(3), 14 - 28. 10.55859/ijiss.1294840
Chicago Aktas Arzu,Yılmaz Ihsan High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE 12, no.3 (2023): 14 - 28. 10.55859/ijiss.1294840
MLA Aktas Arzu,Yılmaz Ihsan High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE, vol.12, no.3, 2023, ss.14 - 28. 10.55859/ijiss.1294840
AMA Aktas A,Yılmaz I High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE. 2023; 12(3): 14 - 28. 10.55859/ijiss.1294840
Vancouver Aktas A,Yılmaz I High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE. 2023; 12(3): 14 - 28. 10.55859/ijiss.1294840
IEEE Aktas A,Yılmaz I "High Dimensional Quantum Digital Signature Depending on Entanglement Swapping." INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE, 12, ss.14 - 28, 2023. 10.55859/ijiss.1294840
ISNAD Aktas, Arzu - Yılmaz, Ihsan. "High Dimensional Quantum Digital Signature Depending on Entanglement Swapping". INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE 12/3 (2023), 14-28. https://doi.org/10.55859/ijiss.1294840