Yıl: 2023 Cilt: 11 Sayı: 3 Sayfa Aralığı: 794 - 803 Metin Dili: Türkçe DOI: 10.29109/gujsc.1244704 İndeks Tarihi: 04-10-2023

Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi

Öz:
Ticari araçların önemli bir parçası olan süspansiyon sistemlerini ana görevi; iyi bir sürüş ve yol tutuş performansı sağlamak, dönüş esnasında direksiyon kontrolü sağlamak ve taşıtın kontrol kuvvetlerine iyi yanıt vermektir. Bu nedenle ticari araçların sürüş güvenliğinin ve konforunun sağlanması ön düzen ve süspansiyon sistemlerinin uyumlu ve sorunsuz çalışması ile ilişkilidir. Taşıtlarda sürüş güvenliği ve konforunun sağlanması ön düzen ve süspansiyon sistemlerinin uyum içinde çalışmasına bağlıdır. Bu çalışmada ağır ticari araçlarda kullanılan süspansiyon sistemlerinde aks (diferansiyel) ve şasiyi birbirine bağlayan klasik X kol yapısına alternatif olarak ayrık boru yapılı bir sistem geliştirilmiş ve bunun sonlu elemanlar analizi ile doğrulanması gerçekleştirilmiştir. Mevcutta var olan sistemde kırılma yaşayabilmekte, bu durumda da parçanın tamamen değiştirilmesi gerekmektedir. Yeni çok kollu tasarımda aynı çalışma şartlarında yeterli mukavemet sağlanmış ayrıca parçalı yapısı sayesinde kırılma durumunda ilgili parçanın değiştirilmesine imkan sağlanmıştır.
Anahtar Kelime: Taşıyıcı kol Sonlu elemanlar analizi Ticari araç Süspansiyon

Design and Analysis of Modular Support Arm Mechanism for Heavy Commercial Vehicle Suspension Systems

Öz:
The main task of suspension systems, which is an important part of commercial vehicles; to provide a good driving and handling performance, to provide steering control during turning and to respond well to the control forces of the vehicle. For this reason, ensuring the driving safety and comfort of commercial vehicles is related to the harmonious and trouble-free operation of the front arrangement and suspension systems. Ensuring driving safety and comfort in vehicles depends on the front arrangement and suspension systems working in harmony. In this study, a split-tube system was developed as an alternative to the classical X-arm structure connecting the axle (differential) and chassis in suspension systems used in heavy commercial vehicles, and this was verified by finite element analysis. There may be damage to the existing system, and in this case, the part must be completely replaced. In the new multi-arm design, sufficient strength is provided under the same operating conditions, and thanks to its modular structure, it is possible to replace the relevant part in case of breakage.
Anahtar Kelime: Support arm Finite element method Commercial vehicle Suspension

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Thoresson M.J., Uys P.E., Els P.S., Snyman J.A. (2009) Efficient optimisation of a vehicle suspension system, using a gradient-based approximation method, Part 2: Optimisation results, Mathematical and Computer Modelling 50 (2009) 1437-1447
  • [2] Xiaowan L., David T., Giacomo S., Martin R., Pascal B., Gang X., José M., Javier C., Lopez A., Miguel A. G., José A. C. (2021) Measurements and modelling of dynamic stiffness of a railway vehicle primary suspension element and its use in a structure-borne noise transmission model, Applied Acoustics, 182(11), 108232, https://doi.org/10.1016/j.apacoust.2021.108232
  • [3] Bingul O., Yildiz A. (2023) Fuzzy logic and proportional integral derivative based multi-objective optimization of active suspension system of a 4×4 in-wheel motor driven electrical vehicle, Journal of Vibration and Control, 2023, Vol. 29(5-6) 1366–1386
  • [4] Ge Z., Wang W., Li G., Rao D. (2022) Design, Parameter Optimisation, and Performance Analysis of Active Tuned Inerter Damper (TID) Suspension for Vehicle, Journal of Sound and Vibration, 525 (5), 116750, https://doi.org/10.1016/j.jsv.2022.116750.
  • [5] Avikal, S. Bisht A., Sharma D. Hindwan H. Yadav K.C. S., Kumar P. Thakur P. (2020). ‘Design and fatigue analysis of front axle beam of a heavy-duty truck using ANSYS’ Materials Today: Proceedings 26, 3211–3215, https://doi.org/10.1016/j.matpr.2020.02.901.
  • [6] Chandra M.R., Sreenivasulu S. Hussain, S.A. (2012). ‘Modeling and Structural analysis of heavy vehicle chassis made of polymeric composite material by three different cross sections’, International Journal of Modern Engineering Research (IJMER), 2 (4), July-Aug. 2012 pp-2594-2600.
  • [7] Ashok G., (2019). ‘Design and FEM Analysis of Heavy Vehicle Chassis Frame using Ansys’, Journal of Critical Reviews, 6(6), 2641-2649.
  • [8] Agarwal A. Mthembu L. (2021). ‘Numerical Modelling and Multi Objective Optimization Analysis of Heavy Vehicle Chassis’, Processes, 9(11), 2028; https://doi.org/10.3390/pr9112028.
  • [9] Lv T., Zhang Y., Duan Y., Yang J. (2021) Kinematics & compliance analysis of double wishbone air suspension with frictions and joint clearances, Mechanism and Machine Theory, 156(2), 104127, https://doi.org/10.1016/j.mechmachtheory.2020.104127.
  • [10] Llopis-Albert C., Rubio F., Zeng S. (2023) Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms. Advances in Engineering Software 176 (2023) 103375
  • [11] Topaç M.M., Günal H., Kuralay N.S. (2009) Fatigue failure prediction of a rear axle housing prototype by using finite element analysis. Engineering Failure Analysis 16 (2009) 1474–1482
  • [12] Ozmen B., Topaç M.M. (2022) Effect of damping rate on fatigue failure tendency of a topology-optimised swing arm for a heavy commercial truck cab suspension. Engineering Failure Analysis 137 (2022) 106276
  • [13] Gupta H., Rajvardhan S., Singh N.K. (2021) Design and analysis of steering knuckle of hybrid metal matrix composite for the fsae vehicle. Materials Today: Proceedings 46 (2021) 10551–10557
  • [14] Shaikh S., Hujare D., Yadav S., Swarnkar P. (2023) Modelling and analysis of heavy commercial vehicle suspension system for fatigue life enhancement, Materials Today: Proceedings, Accepted, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.01.167.
  • [15] Pachapuri M.S.A., Lingannavar R.G., Kelageri N.K., Phadate K.K. (2021) Design and analysis of lower control arm of suspension system, Materials Today: Proceedings 47 (2021) 2949–2956.
  • [16] Karadeniz E., Çolak M., Barutçu F. (2017). GGG-60 Küresel Grafitli Dökme Demir Üretiminde Aşılayıcı Türü ve Miktarının İçyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(1), 275- 282.
  • [17] Tufanoğlu E. (2017). P460-St52 Malzeme Çiftinin Tozaltı Kaynak Yöntemi ile Birleştirilebilirliğinin Araştırılması, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye.
APA ALTINEL K, YILDIZ A, Yuce C (2023). Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. , 794 - 803. 10.29109/gujsc.1244704
Chicago ALTINEL Kayhan,YILDIZ Ahmet,Yuce Celalettin Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. (2023): 794 - 803. 10.29109/gujsc.1244704
MLA ALTINEL Kayhan,YILDIZ Ahmet,Yuce Celalettin Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. , 2023, ss.794 - 803. 10.29109/gujsc.1244704
AMA ALTINEL K,YILDIZ A,Yuce C Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. . 2023; 794 - 803. 10.29109/gujsc.1244704
Vancouver ALTINEL K,YILDIZ A,Yuce C Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. . 2023; 794 - 803. 10.29109/gujsc.1244704
IEEE ALTINEL K,YILDIZ A,Yuce C "Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi." , ss.794 - 803, 2023. 10.29109/gujsc.1244704
ISNAD ALTINEL, Kayhan vd. "Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi". (2023), 794-803. https://doi.org/10.29109/gujsc.1244704
APA ALTINEL K, YILDIZ A, Yuce C (2023). Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 11(3), 794 - 803. 10.29109/gujsc.1244704
Chicago ALTINEL Kayhan,YILDIZ Ahmet,Yuce Celalettin Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 11, no.3 (2023): 794 - 803. 10.29109/gujsc.1244704
MLA ALTINEL Kayhan,YILDIZ Ahmet,Yuce Celalettin Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol.11, no.3, 2023, ss.794 - 803. 10.29109/gujsc.1244704
AMA ALTINEL K,YILDIZ A,Yuce C Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2023; 11(3): 794 - 803. 10.29109/gujsc.1244704
Vancouver ALTINEL K,YILDIZ A,Yuce C Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2023; 11(3): 794 - 803. 10.29109/gujsc.1244704
IEEE ALTINEL K,YILDIZ A,Yuce C "Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi." Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 11, ss.794 - 803, 2023. 10.29109/gujsc.1244704
ISNAD ALTINEL, Kayhan vd. "Ağır Ticari Araç Süspansiyon Sistemleri için Modüler Taşıyıcı Kol Mekanizmasının Tasarımı ve Analizi". Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 11/3 (2023), 794-803. https://doi.org/10.29109/gujsc.1244704