Yıl: 2023 Cilt: 32 Sayı: 3 Sayfa Aralığı: 137 - 146 Metin Dili: Türkçe DOI: 10.17827/aktd.1190284 İndeks Tarihi: 01-11-2023

Anestezik Ajanlar ve Otoakustik Emisyonlar

Öz:
Otoakustik emisyonlar (OAE' lar), kulak kanalında kaydedilebilen ve koklear aktiviteyi yansıttığı düşünülen zayıf sinyallerdir. OAE’ lar ilk olarak 1978'de David Kemp tarafından tanımlanmış ve o zamandan beri OAE' lar işitme kaybı için bir tarama testi haline gelmiştir. Nadiren OAE testlerinin yapılması için sedasyon veya genel anestezi gerekebilir. Anesteziklerin hem hemodinamiyi etkileyerek hem de farmakolojik etkiler ile OAE eşiklerini düşürdüğü veya arttırdığı bildirilmiştir. Çalışmalarda izofluranın iki farklı etkisi gözlenmektedir. İzofluran hem periferik hem de merkezi işitsel sistemler üzerinde zararlı etkilere sahip olabilir, ancak izofluran ayrıca dış tüy hücresi (OHC) amplifikasyonunu güçlendirerek veya gürültüye bağlı işitmeye karşı koruma sağlayarak işitsel işlevi iyileştirebilir. Bu derlemede çeşitli anestezik ajanların otoakustik emisyonlar üzerindeki etkileri değerlendirilmiştir.
Anahtar Kelime: Otoakustik emisyonlar Genel anestezi İnhalasyon Anestezikleri

Anesthetic Agents and Otoacoustic Emissions

Öz:
Otoacoustic emissions (OAEs) are weak signals that can be recorded in the ear canal and are considered to reflect cochlear activity. OAEs were first described by David Kemp in 1978, and since that time, OAEs have become a standardpart of the diagnostic test battery and a screening for hearing loss. Rarely, sedation or general anesthesia may be required for the performance of the OAE tests. Anesthetics were reported to decrease or increase the OAE thresholds both by hemodynamic effect and by pharmacological properties. Two different effects of isoflurane are observed in the studies. Isoflurane can have deleterious effects on both the peripheral and central auditory systems, but isoflurane can also may improve auditory function by enhancing outer hair cell (OHC) amplification or by protecting against noise-induced hearing. In this review, the effects of various anesthetic agents on otoacoustic emissions were evaluated.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1-Yatmaz C. Wistar albino sıçanlarda farklı durumlarda gürültü maruziyetinin odyolojik ve histolojik sonuçlarının araştırılması. İstanbul Medipol Üniversitesi Sağlık Bilimleri Ens. Yüksek lisans tezi 2021.
  • 2-Brownell WE. Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 1990;11:82-92.
  • 3-Noel PE, Ramsey MJ, Amedee RG. Otoacoustic emissions: an emerging diagnostic tool, J La State Med Soc. 1995;147:125-30.
  • 4-Gold T. Hearing II. The physical basis for the action of the cochlea. Proc R Soc Lond B. 1948; 135: 492-8.
  • 5-Kemp DT. Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res. 1986; 22: 95-104.
  • 6-Kemp DT. The evoked cochlear mechanical response and the auditory microstructure - evidence for a new element in cochlear mechanics. Scand Audiol Suppl. 1979;9:35-47.
  • 7-Penner MJ, Glotzbach L, Huang T. Spontaneous otoacoustic emissions: measurement and data. Hear Res. 1993;68:229-37.
  • 8-Cheng J. Signal processing approaches on otoacoustic emissions. Proceedings of the Fourth International Conference on Signal Processing. IEEE press. 1998;2:1612-5.
  • 9-Martin GK, Probst R, Lonsbury-Martin BL. Otoacoustic emissions in human ears: normative findings. Ear Hear. 1990;11:106-20.
  • 10-Cheng J. Time-frequency signal representation of transient evoked otoacoustic emissions via smoothed pseudo Wigner distribution. Report. Stockholm: Karolinska Institutet of Technical Audiology, Stockholm. 1993;129:1-18.
  • 11-Ceranic B. Otoacoustic emissions. In: Luxon LM, Furman JM, Martini A, Stephens D. Textbook of Audiological Medicine Clinical Aspects of Hearing and Balance. 2003, International Standard Book Number-13: 978-1-4822-1144-3 (eBook)
  • 12-Balatsouras DG, Kaberos A, Kloutsos G, Economou NC, Sakellariadis V, Fassolis A, et al. Correlation of transiently evoked to distortion-product otoacoustic emis-sion measures in healthy children. Int J Pediatr Otorhinolaryngol. 2006;70:89–93.
  • 13-Frank AM, Alexiou C, Hulin P, Janssen T, Arnold W, Trappe AE. Non-invasive measurement of intracranial pressure changes by otoacoustic emissions (OAEs)—a report of preliminary data. Zentralbl Neurochir. 2000;61:177–80.
  • 14-O’Brien AJ. Temperature dependency of the frequency and level of a spontaneous otoacoustic emission during fever. Br J Audiol.1994; 28:281–90.
  • 15-McFadden D, Plattsmier HS. Aspirin abolishes spontaneous oto-acoustic emissions. J Acoust Soc Am.1984;76:443–8.
  • 16-Skellett RA, Crist JR, Fallon M, Bobbin RP. Chronic lowlevel noise exposure alters distortion product otoacoustic emissions. Hear Res. 1996;98:68–76.
  • 17-Coats AC. Temperature effects on the peripheral auditory apparatus. Science. 1965;150:1481-3.
  • 18-Doyle WJ, Fria TJ. The effects of hypothermia on the latencies of the auditory brain-stem response (ABR) in the rhesus monkey. Electroenc Clin Neurophysiol. 1985;60:258-66.
  • 19-Hett DA, Smith DC, Pilkingston SN, Abbott TR. Effect of temperature and cardiopulmonary bypass on the auditory evoked response. Br J Anaesth. 1995;75:293-6.
  • 20-Rodriguez RA, Audenaert SM, Austim EH 3rd, Edmonds H L Jr. Auditory evoked responses in children during cardiopulmonary bypass: report of cases. J Clin Neurophysiol. 1995;12:168-76.
  • 21-Khovoles R, Freeman S, Sohmer H. Effect of temperature on the transient evoked and distortion product otoacoustic emissions in rats. Audiol Neurootol. 1998;3:349-60.
  • 22-Seifert E, Lamprecht-Dinnesen A, Asfour B, Rotering H, Bone HG, Scheld HH. The influence of body temperature on transient evoked otoacoustic emissions. Br J Audiol. 1998;32:387-98.
  • 23-Ness JA, Stankiewicz JA, Kaniff T, Pifarre R, Allegretti J. Sensorineural hearing loss associated with aortocoronary bypass surgery: a prospective analysis. Laryngoscope. 1993;103:589–93.
  • 24-Hyodo J, Hakuba N, Koga K, Watanabe F, Shudou M, Taniguchi M, et al. Hypothermia reduces glutamate efflux in perilymph following transient cochlear ischemia. Neuroreport. 2001;12:1983–7.
  • 25-Borin A, Cruz OLM. Study of distortion-product otoacoustic emissions during hypothermia in humans. Braz J Otorhinolaryngol. 2008;74:401-9.
  • 26-Ferber-Viart C, Savourey G, Garcia C, Duclaux R, Bittel J, Collet L. Influence of hyperthermia on cochlear micromechanical properties in humans. Hear Res. 1995;91:202-7.
  • 27-Ropposch T, Walch C, Avian A, Mausser G, Spary M. Effects of the depth of anesthesia on distortion product otoacoustic emissions. Eur Arch Otorhinolaryngol. 2014;271:2897–904.
  • 28-Morawsk K, Namyslowski G, Lisowska G, Bazowski P, Kwiek S, Telischi FF. Intraoperative Monitoring of Cochlear Function Using Distortion Product Otoacoustic Emissions (DPOAEs) in Patients with Cerebellopontine Angle Tumors. Otology & Neurotology. 2004;25:818–25.
  • 29-Ferber-Viart C, Preckel MP, Dubreuil C, Banssillon V, Duclaux R. Effect of anesthesia on transient evoked otoacoustic emissions in humans: a comparison between propofol and isoflurane. Hear Res. 1998;121:53–61.
  • 30-Guven S, Tas A, Adalı MK, Yağız R, Alagöl A, Uzun C et al. Influence of anaesthetic agents on transient evoked otoacoustic emissions and stapedius reflex thresholds. Laryngol Otol. 2006;120:10–5.
  • 31-Kalay E, Caylan R, Karagüzel A. The effect of propofol and sevoflurane based anaesthesia on otoacoustic emission in pediatric patients. Otoscope. 2004;3:85–92.
  • 32-Rhode WS, Kettner RE. Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol. 1987;57:414-42.
  • 33-Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrison RV. The effects of anesthesia on otoacoustic emissions. Hear Res. 1997;110:25-33.
  • 34-Zheng Y, Ohyama K, Hozawa K, Wada H, Takasaka T. Effect of anesthetic agents and middle ear pressure application on distortion product otoacoustic emissions in the gerbil. Hear Res. 1997;112:167- 74.
  • 35-Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, et al. Disorders of cochlear blood flow. Brain Res Brain Res Rev. 2003;43:17–28.
  • 36-Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL, et al. The fate of outer hair cells after acoustic or ototoxic insults. Hear Res. 2006;218:20 –9.
  • 37-Yıldırım YS, Aksoy F, Ozturan O, Veyseller B, Demirhan H. Otoacoustic emission responses of the cochlea to acute and total ischemia Indian J Otolaryngol Head Neck Surg. 2013;65:582-6.
  • 38-Brown JN, Nuttall AL. Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol. 1994; 266: 458-67.
  • 39-Quirk WS, Dengerink HA, Harding JW, Bademian MJ, Swanson SJ, Wright JW. Autoregulation of cochlear blood flow in normotensive and spontaneously hypertensive rats following intra cerebroventricularly mediated adjustment of blood pressure. Hear Res. 1989;38:119-23.
  • 40-Albera R, Ferrero V, Canale A, De Siena L, Pallavicino F, Poli L. Cochlear blood flow modifications induced by anaesthetic drugs in middle ear surgery: comparison between sevoflurane and propofol. Acta Otolaryngol. 2003;123:812.
  • 41-Nakashima T. Autoregulation of cochlear blood flow. Nagoya journal of medical science. 1999; 62:1–9.
  • 42-Shi X. Physiopathology of the Cochlear Microcirculation. Hear Res. 2011;282: 10–24.
  • 43-Hauser R, Probst R, Harris FP, Frei F. Influence of general anesthesia on transiently evoked otoacoustic emissions in humans. Ann Otol Rhinol Laryngol. 1992; 101:994–9.
  • 44-Christian-Serge Degoute Controlled hypotension: a guide to drug choice Drugs. 2007;67:1053-76.
  • 45-Preckel MP, Ferber-Viart C, Leftheriotis G, Dubreuil C, Duclaux R, Saumet JL, et al. Autoregulation of human inner ear blood flow during middle ear surgery with propofol or isoflurane anesthesia during controlled hypotension.Anesth Analg. 1998;87:1002-8.
  • 46-Aladag İ, Kaya Z, Gurbuzler L, Eyibilen A, Songu M, Ates D, et al. The effects of hypotensive anaesthesia on otoacoustic emissions: a prospective, randomized, double-blind study with objective outcome measures. European Archives of Oto-Rhino-Laryngology. 2016;273:73–9.
  • 47-Gungor G, Sutas PB, Gedik O, Atas A, Babazade R. Yilmaz M. Effects of sevoflurane and desflurane on otoacoustic emissions in humans. Eur Arch Otorhinolaryngol. 2015;272:2193-9.
  • 48-Wen J, Duan N, Wang Q, Jing G, Xiao Y. Protective effect of propofol on noise-induced hearing loss Brain Research. 2017; 1657; 95-100.
  • 49-Daskaya H, Bozkurt PS, Dogan R, Gedik Ö, Gungor G, Salihoglu Z. Effects of anesthetic drugs on otoacoustic emissions: Experimental study. Annals of Medical Research. 2019;26:1809-1.
  • 50-Hatzopoulosa S, Petruccelli J, Laurell G, Finessod M, Martinia A. Evaluation of anesthesia effects in a rat animal model using otoacoustic emission protocols. Hearing Research. 2002;170:12-21.
  • 51-Zhang M, Abbas PJ. Effects of middle ear pressure on otoacoustic emission measures. J Acoust Soc Am. 1997;102:1032.
  • 52-Sun XM, Shaver MD. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans Ear Hear. 2009;30(2): 191-202.
  • 53-Zheng Y, Ohyama K, Hozawa K, Wada H, Takasaka T. Effect of anesthetic agents and middle ear pressure application on distortion product otoacoustic emissions in the gerbil. Hear Res. 1997; 112:167-74.
  • 54-Buyukkocak U, Kilic R, Arikan OK, Sert O, Datli F. Prospective randomized trial to determine whether inhalational anesthetics have any effects on hearing function. J Otolaryngol Head Neck Surg. 2009; 38:495-500.
  • 55-Şahin Mİ, Vural A, Akın A, Ketenci İ, Ünlü Y. Effects of Dexmedetomidine Infusion During Sevoflurane Anesthesia on Otoacoustic Emissions. J Audiol Otol. 2019;23:89-95.
  • 56-Gökahmetoğlu G, Pehlivan S, Aksu R, Biçer C. Effects of dexmedetomidine and esmolol on otoacoustic emissions during controlled hypotensive anesthesia: randomized clinical trial. Clin Invest Med. 2020;43:9-17.
  • 57-Nader ND, Simpson G, Reedy RL. Middle ear pressure changes after nitrous oxide anesthesia and its effect on postoperative nausea and vomiting. Laryngoscope. 2004;114:883-6.
  • 58-Bielefeld EC. Influence of dose and duration of isoflurane anesthesia on the auditory brainstem response in the rat. Int J Audiol. 2014; 53:250-8.
  • 59-Cederholm JM, Froud KE, Wong AC, Ko M, Ryan AF, Housley GD. Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse. Hear Res. 2012;292:71-9.
  • 60-Ruebhausen MR, Brozoski TJ, Bauer CA. A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats. Hear Res. 2012;287:25-9.
  • 61-Santarelli R, Arslan E, Carraro L, Conti G, Capello M, Plourde G. Effects of isoflurane on the auditory brainstem responses and middle latency responses of rats. Acta Otolaryngol. 2003;123:176-81.
  • 62-Xiao Y, Wen J, Bai Y, Duan N, Jing GX. Different effects of propofol and isoflurane on cochlear blood flow and hearing function in Guinea pigs PLoS One. 2014;12;9.
  • 63-Sheppard AM, Zhao D-L, Salvi R. Isoflurane anesthesia suppresses distortion product otoacoustic emissions in rats. J Otol. 2018;13:59–64.
  • 64-Kim JU, Lee HJ, Kang HH, Shin JW, Ku SW, Ahn JH, et al. Protective effect of isoflurane anesthesia on noise-induced hearing loss in mice. Laryngoscope. 2005;115;1996-9.
  • 65-Drexl M, Henke J, Kossl M. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions. Hear Res. 2004;194:135-42.
  • 66-Chung JW, Ahn JH, Kim JY, Lee HJ, Kang HH, Lee YK, et al. The effect of isoflurane, halothane and pentobarbital on noise-induced hearing loss in mice. Anesth Analg. 2007;104:1404-8.
  • 67-Janecka-Placek A, Lisowska G, Paradysz A Misiołek H. Cochlear Function Monitoring After Spinal Anesthesia. Med Sci Monit. 2015;21:2767-73.
APA Güneş C, Biricik E, TARKAN O, Gunes Y (2023). Anestezik Ajanlar ve Otoakustik Emisyonlar. , 137 - 146. 10.17827/aktd.1190284
Chicago Güneş Ceren,Biricik Ebru,TARKAN OZGUR,Gunes Yasemin Anestezik Ajanlar ve Otoakustik Emisyonlar. (2023): 137 - 146. 10.17827/aktd.1190284
MLA Güneş Ceren,Biricik Ebru,TARKAN OZGUR,Gunes Yasemin Anestezik Ajanlar ve Otoakustik Emisyonlar. , 2023, ss.137 - 146. 10.17827/aktd.1190284
AMA Güneş C,Biricik E,TARKAN O,Gunes Y Anestezik Ajanlar ve Otoakustik Emisyonlar. . 2023; 137 - 146. 10.17827/aktd.1190284
Vancouver Güneş C,Biricik E,TARKAN O,Gunes Y Anestezik Ajanlar ve Otoakustik Emisyonlar. . 2023; 137 - 146. 10.17827/aktd.1190284
IEEE Güneş C,Biricik E,TARKAN O,Gunes Y "Anestezik Ajanlar ve Otoakustik Emisyonlar." , ss.137 - 146, 2023. 10.17827/aktd.1190284
ISNAD Güneş, Ceren vd. "Anestezik Ajanlar ve Otoakustik Emisyonlar". (2023), 137-146. https://doi.org/10.17827/aktd.1190284
APA Güneş C, Biricik E, TARKAN O, Gunes Y (2023). Anestezik Ajanlar ve Otoakustik Emisyonlar. Arşiv Kaynak Tarama Dergisi, 32(3), 137 - 146. 10.17827/aktd.1190284
Chicago Güneş Ceren,Biricik Ebru,TARKAN OZGUR,Gunes Yasemin Anestezik Ajanlar ve Otoakustik Emisyonlar. Arşiv Kaynak Tarama Dergisi 32, no.3 (2023): 137 - 146. 10.17827/aktd.1190284
MLA Güneş Ceren,Biricik Ebru,TARKAN OZGUR,Gunes Yasemin Anestezik Ajanlar ve Otoakustik Emisyonlar. Arşiv Kaynak Tarama Dergisi, vol.32, no.3, 2023, ss.137 - 146. 10.17827/aktd.1190284
AMA Güneş C,Biricik E,TARKAN O,Gunes Y Anestezik Ajanlar ve Otoakustik Emisyonlar. Arşiv Kaynak Tarama Dergisi. 2023; 32(3): 137 - 146. 10.17827/aktd.1190284
Vancouver Güneş C,Biricik E,TARKAN O,Gunes Y Anestezik Ajanlar ve Otoakustik Emisyonlar. Arşiv Kaynak Tarama Dergisi. 2023; 32(3): 137 - 146. 10.17827/aktd.1190284
IEEE Güneş C,Biricik E,TARKAN O,Gunes Y "Anestezik Ajanlar ve Otoakustik Emisyonlar." Arşiv Kaynak Tarama Dergisi, 32, ss.137 - 146, 2023. 10.17827/aktd.1190284
ISNAD Güneş, Ceren vd. "Anestezik Ajanlar ve Otoakustik Emisyonlar". Arşiv Kaynak Tarama Dergisi 32/3 (2023), 137-146. https://doi.org/10.17827/aktd.1190284