Yıl: 2023 Cilt: 44 Sayı: 3 Sayfa Aralığı: 510 - 515 Metin Dili: İngilizce DOI: 10.17776/csj.1268752 İndeks Tarihi: 05-10-2023

Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches

Öz:
In this study, the adsorption isotherm models for the sorption of carminic acid on P(AAm-ClAETA) hydrogels are explained by experimental and theoretical studies. The crosslinked hydrogels with ethylene glycol dimethacrylate were prepared by radical addition reaction of acrylamide (AAm) and 2-(acryloyloxy)ethyl trimethylammonium chloride (ClAETA) monomers in an aqueous solution. The spectral and morphological analyses of P(AAm-ClAETA) hydrogels were performed by FTIR/ATR and SEM, respectively. The adsorbed amounts of carminic acid on P(AAm-ClAETA) hydrogels were evaluated by Giles, Langmuir, and Freundlich adsorption isotherm models. Langmuir parameters were calculated for the adsorption of the dye on the hydrogels according to the L-type Giles isotherm. In addition, it was determined that its adsorption was appropriate from the RL values calculated for 500 mg L-1 carminic acid concentration. In addition, molecular electrostatic potential (MEP) mapping was performed to predict the reactive sites of P(AAm-ClAETA) hydrogels and carminic acid. The results showed that the theoretical and experimental data of the hydrogels were in agreement with each other. As a result, it can be said that P(AAm-ClAETA) hydrogels are suitable for the removal of anionic dyes such as carminic acid from aqueous solutions.
Anahtar Kelime: 2-(acryloyloxy)ethyl trimethylammonium chloride Acrylamide Hydrogel Carminic acid Molecular electrostatic potential (MEP)

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] El-Azazy M., Dimassi S., El-Shafie A., Issa A., Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design, Appl. Sci., 9 (2019) 4856.
  • [2] Atun G., Hisarli G. Adsorption of carminic acid, a dye onto glass powder, Chemical Engineering Journal, 95(1-3) (2003) 241-249.
  • [3] Abbasi M., Sabzehmeidani M. M., Ghaedi M., Jannesar R., Shokrollahi A., Adsorption performance of calcined copper-aluminum layered double hydroxides/CNT/PVDF composite films toward removal of carminic acid, Journal of Molecular Liquids, 329 (2021) 115558.
  • [4] Dastgerdi Z. H., Abkhiz V., Meshkat S. S., Ghorbani N., Preparation of novel magnetic grafted raft agent nanocomposite: Application in carmine dye adsorptive removal from waste water, Journal of Environmental Chemical Engineering, 7(3) (2019) 103109.
  • [5] Mahnashi M. H., Abu-Alrub S. S., Amer M. W., Alqarni A. O., Kinetics and thermodynamics of enhanced adsorption of E120 dye using activated carbon, Tropical Journal of Pharmaceutical Research, 20(3) (2022) 585-592.
  • [6] Misriyani M., Setianingsih T., Darjito D., Effect of Carbonization Time of Mesoporous Carbon in the Dyes Adsorption: Rhodamine B, Methylene Blue and Carmine, Indonesian Journal of Fundamental and Applied Chemistry, 5(1) (2020) 1-6.
  • [7] Keskin Z. S., Şenol Z. M., Kaya S., Şimşek S., Prunus mahaleb shell as a sustainable bioresource for carminic acid removal from aqueous solution: Experimental and theoretical studies, Journal of Molecular Structure, (2023) 134618.
  • [8] Işıkver Y., Işıkver A., Synthesis and Characterization of Cationic P(AAm-CLAETA) Hydrogels, and Their Uses in Adsorption of Titan Yellow, Cumhuriyet Science Journal, 43(1) (2022) 38-44.
  • [9] Işıkver Y., Synthesis of Anionic Hydrogels for Uranyl Ion Adsorption, Cumhuriyet Science Journal, 38(4) (2017a) 770-780.
  • [10] Işıkver Y., Removal of some cationic dyes from aqueous solution by acrylamide- or 2-hydroxyethyl methacrylate-based copolymeric hydrogels, Fibers and Polymers, 18(11) (2017b) 2070-2078.
  • [11] Roa K., Tapiero Y., Thotiyl M. O., Sánchez J., Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water, Polymers, 13(14) (2021) 2265.
  • [12] Onder A., Ilgin P., Ozay H., Ozay O., Removal of dye from aqueous medium with pH-sensitive poly[(2-(acryloyloxy)ethyl]trimethylammonium chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel, Journal of Environmental Chemical Engineering, 8(5) (2020) 104436.
  • [13] Sánchez J., Mendoza N., Rivas B. L., Basáez L., Santiago-García J. L., Preparation and characterization of water-soluble polymers and their utilization in chromium sorption, Journal of Applied Polymer Science, 134(39) (2017) 45355.
  • [14] Tapiero Y., Sánchez J., Rivas B. L., Ion-selective interpenetrating polymer networks supported inside polypropylene microporous membranes for the removal of chromium ions from aqueous media, Polymer Bulletin, 73(4) (2015) 989-1013.
  • [15] Giles C. H., MacEwan T. H., Nakhwa S. N., Smith D., 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, Journal of the Chemical Society (Resumed), (1960) 3973.
  • [16] Saraydın D., Işıkver Y., Karadağ E., A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems, Journal of Polymers and the Environment, 26(9) (2018) 3924-3936.
  • [17] WOS: https://www.webofscience.com/wos/woscc/summary/7b524d87-0438-4aea-b0ea-f935dc80c3b9-657d4d37/relevance/1.
  • [18] Politzer P., Truhlar D.G. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering and Energies of Organic, Inorganic and Biological Systems, Plenum, New York, 1981.
  • [19] Ehresmann B., Martin B., Horn A.H.C., Clark T., Local molecular properties and their use in predicting reactivity, Journal of Molecular Modeling, 9(5) (2003) 342-347.
  • [20] Akman F., Spectroscopic investigation, HOMO-LUMO energies, natural bond orbital (NBO) analysis and thermodynamic properties of two-armed macroinitiator containing coumarin with DFT quantum chemical calculations, Canadian Journal of Physics, 94(6) (2016) 583-593.
  • [21] Gaussian 16, Revision C.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian, Inc., Wallingford CT, 2019.
  • [22] Dennington R., Keith T.A., Millam J.M., GaussView, Version 6, Semichem, Inc., Shawnee Mission, KS, 2016.
  • [23] Frisch M.J., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G., Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford, CT, 2009.
  • [24] Stephens P.J., Devlin F., Chabalowski C., Frisch M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, Journal of Physical Chemistry, 98(45) (1994) 11623-11627.
  • [25] Raghavachari K., Perspective on “Density functional thermochemistry. III. The role of exact exchange”, Theoretical Chemistry Accounts, 103(3-4) (2000) 361-363.
APA (Caldiran) Isikver Y, Işıkver A (2023). Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. , 510 - 515. 10.17776/csj.1268752
Chicago (Caldiran) Isikver Yasemin,Işıkver Ali Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. (2023): 510 - 515. 10.17776/csj.1268752
MLA (Caldiran) Isikver Yasemin,Işıkver Ali Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. , 2023, ss.510 - 515. 10.17776/csj.1268752
AMA (Caldiran) Isikver Y,Işıkver A Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. . 2023; 510 - 515. 10.17776/csj.1268752
Vancouver (Caldiran) Isikver Y,Işıkver A Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. . 2023; 510 - 515. 10.17776/csj.1268752
IEEE (Caldiran) Isikver Y,Işıkver A "Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches." , ss.510 - 515, 2023. 10.17776/csj.1268752
ISNAD (Caldiran) Isikver, Yasemin - Işıkver, Ali. "Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches". (2023), 510-515. https://doi.org/10.17776/csj.1268752
APA (Caldiran) Isikver Y, Işıkver A (2023). Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. Cumhuriyet Science Journal, 44(3), 510 - 515. 10.17776/csj.1268752
Chicago (Caldiran) Isikver Yasemin,Işıkver Ali Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. Cumhuriyet Science Journal 44, no.3 (2023): 510 - 515. 10.17776/csj.1268752
MLA (Caldiran) Isikver Yasemin,Işıkver Ali Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. Cumhuriyet Science Journal, vol.44, no.3, 2023, ss.510 - 515. 10.17776/csj.1268752
AMA (Caldiran) Isikver Y,Işıkver A Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. Cumhuriyet Science Journal. 2023; 44(3): 510 - 515. 10.17776/csj.1268752
Vancouver (Caldiran) Isikver Y,Işıkver A Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches. Cumhuriyet Science Journal. 2023; 44(3): 510 - 515. 10.17776/csj.1268752
IEEE (Caldiran) Isikver Y,Işıkver A "Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches." Cumhuriyet Science Journal, 44, ss.510 - 515, 2023. 10.17776/csj.1268752
ISNAD (Caldiran) Isikver, Yasemin - Işıkver, Ali. "Investigation of Adsorption Isotherm Models for Interaction of P(AAm-ClAETA) and Carminic Acid, and Theoretical Approaches". Cumhuriyet Science Journal 44/3 (2023), 510-515. https://doi.org/10.17776/csj.1268752