Yıl: 2023 Cilt: 51 Sayı: 1 Sayfa Aralığı: 125 - 132 Metin Dili: İngilizce DOI: 10.15671/hjbc.1166975 İndeks Tarihi: 17-10-2023

Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography

Öz:
Cryogels are polymers prepared in frozen milieu, and garnered significant attention in the field as new separation mat - rices. They have denoted significant benefits including supermacroporosity, short diffusion path, low pressure, and resistance for both adsorption and elution. Macro- and connected pores give polymeric cryogels a unique spongy structure. Immobilized metal affinity chromatography (IMAC) is a standard analytical separation method for the purification of bio - molecules. Several transition ions generate stable complexes with electron-rich compounds. IMAC sorbent is obtained by complexing first-order transition metal ions over chelating agents. On the other hand, lysozyme is an enzyme found in vari - ous vertebrate cells and secretions. Common applications include its use as a cell disrupting agent, as an anti-bacterial agent, as a meal additive, and as a medicine against infections and ulcers. In this study, cryogel-based polymeric material was prepared by free-radical polymerization method with hydroxyethyl methacrylate/glycidyl methacrylate monomer pair that were covalently interacted with iminodiacetic acid metal chelating agent. The regions showing affinity for lysozyme enzyme were formed by binding with Ni(II) metal ions. The polymeric cryogel was first characterized using Fourier transform inf - rared spectrophotometer, scanning electron microscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy and swelling degree test. Then, the effects of pH, concentration, temperature, salt concentration and flow rate on enzyme adsorption capacity were evaluated, and optimum conditions were found. According to the optimization experiments, the maximum adsorption capacity of polymeric cryogel was reported as 11.82 mg/g at pH 7.4 and 25°C with a 0.5 mL/min flow rate and without ionic strength.
Anahtar Kelime: Enzyme adsorption immobilized metal affinity chromatograpy cryogel.

Immobilize Metal Afinite Kromatografisi için Polimerik Kriyojellerin Karşılaştırması

Öz:
Kriyojeller, donmuş ortamda hazırlanan polimerlerdir ve yeni ayırma matrisleri olarak bu alanda büyük ilgi görmüştür. Sü - permakrogözenekliliği, kısa difüzyon yolu, düşük basıncı ve hem adsorpsiyona hem de elüsyona karşı gösterdiği az direnç gibi önemli faydalar sağlamışlardır. Büyük ve bağlı gözenekler polimerik kriyojellere özgün süngersi yapı özelliği kazandırır. İmmobilize metal afinite kromotografisi (IMAC), biyomoleküllerin saflaştırılması için kullanılan standart analitik bir ayırma yöntemidir. Birçok geçiş iyonu elektronca zengin bileşiklerle kararlı kompleksler oluştururlar. Birinci sıra geçiş metal iyonları şelatlayıcı ajanlar üzerinden kompleksleştirilerek IMAC sorbenti elde edilir. Lizozim çeşitli omurgalı hücreleri ve salgılarında bulunan bir enzimdir. Yaygın uygulamaları arasında bakteri hücre içi ürünlerin çıkarılması için bir hücre parçalayıcı madde, oftalmolojide anti-bakteriyel bir madde, süt ürünlerinde bir gıda katkı maddesi, enfeksiyon ve ülser tedavisi için bir ilaç olarak kullanılmaları sayılabilir. Bu çalışmada, hidroksietil metakrilat/glisidil metakrilat monomer çifti ile serbest radikal polimerizasyonu yöntemi ile hazırlanan kriyojel-temelli polimerik malzeme iminodiasetik asit metal şelatlayıcı ajanı ile ko - valent olarak etkileştirilmiş ve Ni(II) metal iyonları ile bağlanarak lizozim enzimine afinite gösteren bölgeler oluşturulmuştur. Hazırlanan polimerik kriyojel önce Fourier transform spektrofotometresi, taramalı elektron mikroskopisi, termal gravimetrik analiz, X-ışını fotoelektron spektroskopisi ve şişme derecesi testi ile karakterize edilmiştir. Daha sonra, lizozim adsorplama kapasitesine pH, derişim, sıcaklık, tuz derişimi ve akış hızı etkileri araştırılarak optimum koşullar bulunmuştur. Optimizasyon deneylerine göre, polimerik kriyojelin maksimum adsorpsiyon kapasitesi, pH 7.4’de, 25°C'de, 0.5 mL/dk akış hızında ve iyonik kuvvet olmadan 11.82 mg/g olarak rapor edilmiştir.
Anahtar Kelime: Enzim adsorpsiyonu immobilize metal afinite kromatografisi kriyojel

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. J. Thömmes, M. Etzel, Alternatives to chromatographic separations, Biotechnol. Prog., 23 (2007) 42-45.
  • 2. Y. Saylan, A. Denizli, Supermacroporous composite cryogels in biomedical applications, Gels, 5 (2019) 20.
  • 3. M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • 4. V.I. Lozinsky, Cryostructuring of polymeric systems. 50.† cryogels and cryotropic gel-formation: Terms and definitions, Gels, 4 (2018) 77-89.
  • 5. S. Akgönüllü, H. Yavuz, A. Denizli, Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine, Artif. Cell. Nanomed. Biotechnol., 45 (2017) 800-807.
  • 6. G.C. Ingavle, L.W.J. Baillie, Y. Zheng, E.K. Lis, I.N. Savina, C.A. Howell, S.V. Mikhalovsky, S.R. Sandeman, Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen, Biomaterials, 50 (2015) 140-153.
  • 7. K. Çetin, A. Denizli, 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Coll. Surf. B, 126 (2015) 401-406.
  • 8. C.Y. Kuo, C.H. Chen, C.Y. Hsiao, J.P. Chen, Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering, Carbohydr. Polym., 117 (2015) 722-730.
  • 9. N.K. Singh, R.N. Dsouza, M. Grasselli, M. Fernández-Lahore, High capacity cryogel-type adsorbents for protein purification, J. Chromatogr. A, 1355 (2014) 143-148.
  • 10. J. Porath, Immobilized metal ion affinity chromatography, Protein Expr. Purif., 3 (1992) 263-281.
  • 11. E.K.M. Ueda, P.W. Gout, L. Morganti, Current and prospective applications of metal ion-protein binding, J. Chromatogr. A, 988 (2003) 1-23.
  • 12. N. Tüzmen, T. Kalburcu, A. Denizli, Immobilization of catalase via adsorption onto metal-chelated affinity cryogels, Process Biochem. 47 (2012) 26-33.
  • 13. S. Mallik, R.D. Johnson, F.H. Arnold, Selective recognition of bis- imidazoles by complementary bis-metal ion complexes, JACS, 115 (1993) 2518-2520.
  • 14. A. Denizli, Purification of antibodies by affinity chromatography, Hacettepe J. Biol. Chem., 39 (2011) 1-18.
  • 15. E. Tamahkar, A. Denizli, Metal ion coordination interactions for biomolecule recognition: a review, Hittite J. Sci. Eng., 1 (2014) 21- 26.
  • 16. N. Bereli, Y. Saylan, L. Uzun, R. Say, A. Denizli, L-histidine imprinted supermacroporous cryogels for protein recognition, Sep. Purif. Technol., 82 (2011) 28-35.
  • 17. Y. Saylan, E. Tamahkar, A. Denizli, Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers, J. Biomater. Sci. Polym. Ed., 28 (2017) 1950-1965.
  • 18. A. Vasilescu, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Aptamer- based electrochemical sensing of lysozyme, Chemosensors, 4 (2016) 10-30.
  • 19. Y. Saylan, F. Yılmaz, A. Derazshamshir, E. Yılmaz, A. Denizli, Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor, J. Mol. Recog., 30 (2017) e2631.
  • 20. C. Ocana, A. Hayat, R.K. Mishra, A. Vasilescu, M. del Valle, J.L. Marty, Label free aptasensor for lysozyme detection: a comparison of the analytical performance of two aptamers, Bioelectrochem., 105 (2015) 72-77.
  • 21. G. Öztürk, Y. Saylan, A. Denizli, Designing composite cryogel carriers for tyrosine adsorption, Sep. Purif. Technol., 254 (2021) 117622.
  • 22. A. Baimenov, D. Berillo, S. Azat, T. Nurgozhin, V. Inglezakis, Removal of Cd2+ from water by use of super-macroporous cryogels and comparison to commercial adsorbents, Polymers, 12 (2020) 2405.
  • 23. B. Wan, J. Li, F. Ma, N. Yu, W. Zhang, L. Jiang, H. Wei, Preparation and properties of cryogel based on poly(2-hydroxyethyl methacrylate- co-glycidyl methacrylate), Langmuir, 35 (2019) 3284-3294.
  • 24. R.H. Şenay, S.M Gökalp, E. Türker, E. Feyzioğlu, A. Aslan, S. Akgöl, A new morphological approach for removing acid dye from leather waste water: Preparation and characterization of metalchelated spherical particulated membranes (SPMs), J. Environ. Manage., 151 (2015) 295-302.
  • 25. E. Yeşilova, B. Osman, A. Kara, E. Tümay Özer, Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption, Sep. Purif. Technol., 200 (2018) 155-163.
  • 26. T. Matsunaga, T. Hishiya, T. Takeuchi. Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films, Anal Chim Acta., 591 (2007) 63-67.
  • 27. S. Öztürk, N. Demir, Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC, J. Food Compos. Anal., 100 (2021) 103931.
  • 28. I. Göktürk, I. Perçin, A. Denizli, Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate-N- methacryloyl-(l)-glutamic acid) cryogel discs, Prep. Biochem. Biotechnol., 46 (2016) 602-609.
  • 29. Y. Saylan, N. Bereli, L. Uzun, A. Denizli, Monolithic boronate affinity columns for IgG separation, Sep. Sci. Technol., 49 (2014) 1555- 1565.
  • 30. Y. Saylan, L. Uzun, A. Denizli, Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization, Ind. Eng. Chem. Res., 54 (2015) 454-461.
  • 31. F. Inci, Y. Saylan, A.M. Kojouri, M.G. Ogut, A. Denizli, U. Demirci, A disposable microfluidic-integrated hand-held plasmonic platform for protein detection, Appl. Mat. Today, 18 (2020) 100478.
  • 32. M. Odabaşı, L. Uzun, A. Denizli, Porous magnetic chelator support for albumin adsorption by ımmobilized metal affinity separation, J. Appl. Polym. Sci., 93 (2004) 2501-2510.
  • 33. S. Emir, R. Say, H. Yavuz, A. Denizli, A new metal chelate affinity adsorbent for cytochrome c. Biotechnol. Prog., 20 (2004) 223-228.
  • 34. E.B. Altıntaş, N. Tüzmen, L. Uzun, A. Denizli, Immobilized metal affinity adsorption for antibody depletion from human serum with monosize beads, Ind. Eng. Chem. Res., 46 (2007) 7802-7810.
  • 35. N. Bereli, G. Şener, E. B. Altıntaş, H. Yavuz, A. Denizli, Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G, Mat. Sci. Eng. C, 30 (2010) 323-329.
  • 36. E.B. Altıntas, D. Türkmen, V. Karakoç, A. Denizli, Hemoglobin binding from human blood hemolysate with poly(glycidyl methacrylate) beads, Coll. Surf. B Bioint., 85 (2011) 235-240.
  • 37. M. Uygun, B. Akduman, S. Akgöl, A. Denizli, A new metal-chelated cryogel for reversible ımmobilization of urease, Appl. Biochem. Biotechnol., 170 (2013) 1815-1826.
  • 38. B. Akduman, M. Uygun, D. Aktaş Uygun, S. Akgöl, A. Denizli, Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels, Mat. Sci. Eng. C, 33 (2013) 4842-4848.
  • 39. F. Kartal, A. Denizli, Surface molecularly imprinted magnetic microspheres for the recognition of albumin, J. Sep. Sci., 37 (2014) 2077-2086.
  • 40. D. Aktaş Uygun, M. Uygun, S. Akgöl, A. Denizli, Reversible adsorption of catalase onto Fe3+ chelated poly(AAm-GMA)-IDA cryogels. Mat. Sci. Eng. C, 50 (2015) 379-385.
APA SAYLAN Y (2023). Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. , 125 - 132. 10.15671/hjbc.1166975
Chicago SAYLAN YEŞEREN Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. (2023): 125 - 132. 10.15671/hjbc.1166975
MLA SAYLAN YEŞEREN Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. , 2023, ss.125 - 132. 10.15671/hjbc.1166975
AMA SAYLAN Y Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. . 2023; 125 - 132. 10.15671/hjbc.1166975
Vancouver SAYLAN Y Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. . 2023; 125 - 132. 10.15671/hjbc.1166975
IEEE SAYLAN Y "Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography." , ss.125 - 132, 2023. 10.15671/hjbc.1166975
ISNAD SAYLAN, YEŞEREN. "Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography". (2023), 125-132. https://doi.org/10.15671/hjbc.1166975
APA SAYLAN Y (2023). Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. Hacettepe Journal of Biology and Chemistry, 51(1), 125 - 132. 10.15671/hjbc.1166975
Chicago SAYLAN YEŞEREN Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. Hacettepe Journal of Biology and Chemistry 51, no.1 (2023): 125 - 132. 10.15671/hjbc.1166975
MLA SAYLAN YEŞEREN Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. Hacettepe Journal of Biology and Chemistry, vol.51, no.1, 2023, ss.125 - 132. 10.15671/hjbc.1166975
AMA SAYLAN Y Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. Hacettepe Journal of Biology and Chemistry. 2023; 51(1): 125 - 132. 10.15671/hjbc.1166975
Vancouver SAYLAN Y Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography. Hacettepe Journal of Biology and Chemistry. 2023; 51(1): 125 - 132. 10.15671/hjbc.1166975
IEEE SAYLAN Y "Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography." Hacettepe Journal of Biology and Chemistry, 51, ss.125 - 132, 2023. 10.15671/hjbc.1166975
ISNAD SAYLAN, YEŞEREN. "Benchmarking Polymeric Cryogels for Immobilized Metal Affinity Chromatography". Hacettepe Journal of Biology and Chemistry 51/1 (2023), 125-132. https://doi.org/10.15671/hjbc.1166975