Yıl: 2023 Cilt: 30 Sayı: 10 Sayfa Aralığı: 1276 - 1282 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2023.08.219 İndeks Tarihi: 31-10-2023

The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats

Öz:
Aim: Doxorubicin (DOX) is a type of chemotherapy drug frequently used to treat different malignancies. However, one of the most serious adverse effects of DOX usage is the potential of cardiotoxicity. Cardioprotective medications may be used to reduce cardiac damage because of DOX therapy. Glycyrrhizin (GL) is found in high amounts in the roots of the ‘Licorice’ plant from the Glycyrrhiza species. Due to its possible effects on blood pressure (BP) and cardiovascular health, GL has attracted attention concerning the heart. Oxidative stress and inflammatory process have been shown to be responsible for DOX-induced cardiotoxicity (DIC). For this reason, in consequence of its possible pharmacological benefits, such as antiinflammatory and antioxidant GL has been researched in this study. Here in, we aimed to investigate the protective effects of GL on DIC. Materials and Methods: In this study, thirty-two male Wistar albino adult male rats were used. Four groups of rats were assigned at randomly: Control, DOX, GL+DOX, and GL groups. DOX was given 20 mg/kg intraperitoneally (i.p.) and 100 mg/kg GL was administered orally (p.o.) once a day for 14 days. Electrocardiography (ECG) and BP records of the rats were obtained. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels in the tissue were measured. Histopathological analyses were performed on the myocardium and descending aorta. Results: In the DOX group, mean and diastolic BP were higher than in the control group (p<0.05). In the GL+DOX group, diastolic BP was lower than in the DOX group (p<0.05). Pathological ECG changes such as ST segment changes and T negativity were observed in DOX-treated groups. MDA, SOD, CAT, and GSH levels studied in heart tissue were similar in all groups (p>0.05). GSH level in descending aorta was significantly lower in the GL+DOX group compared to the other groups (p<0.05). In the DOX group, degenerated cardiomyocyte density, interstitial edema, and severity of congestion-hemorrhage were statistically significantly increased compared to the control group (p<0.05). On the other hand, degenerated cardiomyocyte density was found to be significantly decreased in the GL+DOX group compared to the DOX group (p<0.05). In the DOX group, thinning of elastic lamellae and loss of myofibrils in muscle cells were observed in the descending aorta. Therefore, the histopathological alterations identified in the DOX group exhibited a significant statistical improvement in the GL+DOX group (p<0.05). Conclusion: Based on the study’s findings, GL can regulate high BP caused by DOX and also alleviate the toxic effects of DOX on both the myocardium and descending aorta.
Anahtar Kelime: Cardiotoxicity Doxorubicin Glycyrrhizin Oxidative stress Rat

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci. 2020;(15): 117-73.
  • 2. Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, et al. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol. 2022;22(4):292-310.
  • 3. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991 ;25(12):1672-7.
  • 4. Avagimyan A, Mkrtchyan L, Abrahomovich O, Sheibani M, Guevorkyan A, Sarrafzadegan N, et al. AC-Mode of Chemotherapy as a Trigger of Cardiac Syndrome X: A Case Study. Curr Probl Cardiol. 2022;47(9):100994.
  • 5. Ermis N, Ulutas Z, Ozhan O, Yildiz A, Vardi N, Colak C, et al. Angiotensin II type 2 receptor agonist treatment of doxorubicin induced heart failure. Biotech Histochem. 2023;98(5):326-35.
  • 6. Deutch MR, Grimm D, Wehland M, Infanger M, Krüger M. Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods. 2019;8(10):495.
  • 7. Jalilzadeh-Amin G, Najarnezhad V, Anassori E, Mostafavi M, Keshipour H. Antiulcer properties of Glycyrrhiza glabra L. Extract on experimental models of gastric ulcer in mice. Iranian J. Pharm. Res. 2015; 14, 1163–70.
  • 8. Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The antiinflammatory activity of licorice, a widely used Chinese herb. Pharm Biol. 2017;55(1):5-18.
  • 9. Fukuchi K, Okudaira N, Adachi K, Odai-Ide R, Watanabe S, Ohno H, Yamamoto M, Kanamoto T, Terakubo S, Nakashima H, Uesawa Y, Kagaya H, Sakagami H. Antiviral and Antitumor Activity of Licorice Root Extracts. In Vivo. 2016;30(6):777-85.
  • 10. Sahna E, Parlakpinar H, Ozer MK, Ozturk F, Ozugurlu F, Acet A. Melatonin protects against myocardial doxorubicin toxicity in rats: role of physiological concentrations. J Pineal Res 2003; 35: 257-61.
  • 11. Yan G, Zhang H, Wang W, Li Y, Mao C, Fang M, et al. Investigation of the influence of glycyrrhizin on the pharmacokinetics of celastrol in rats using LC-MS and its potential mechanism. Xenobiotica. 2017; 47(7):607-13.
  • 12. Haleagrahara N, Varkkey J, Chakravarthi S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int J Mol Sci. 2011; 12(10):7100-13.
  • 13. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry. 1978;86(1):271-8.
  • 14. Ellman GL. Tissue sulfhydryl groups. Archives of biochemistry and biophysics. 1959;82(1):70-7.
  • 15. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497-500.
  • 16. Luck, H. Catalase. In: H. Bergmeyer, eds. Methods of enzymatic analysis. New York, NY; London: Academic Press, 1965; 885–94.
  • 17. Hiller A, Greif RL, Beckman WW. Determination of protein in urine by the biuret method. J Biol Chem. 1948;176(3):1421-9.
  • 18. Arslan AK., Yasar S, Colak C., Yologlu, S. WSSPAS: An InteractiveWeb Application for Sample Size and Power Analysis with R Using Shiny. Turkiye Klinikleri Journal of Biostatistics, 2018;10(3), 224-46.
  • 19. Arslan AK., Çiçek IB., Çolak, C. Open Source Web Based Software for Random Assignment/Allocation Methods in Data Processing. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP).2019;1-4.
  • 20. Arslan, A. K., Yaşar, Ş., Çolak, C. & Yoloğlu, S. (2018). R Shiny Paketi ile Kruskal Wallis H Testi için İnteraktif Bir Web Uygulaması. İnönü Üniversitesi Sağlık Bilimleri Dergisi, 7(2), 49-55.
  • 21. Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J Cell Mol Med. 2020 ;24(12):6534-57.
  • 22. Hu Z, Xiao M, Cai H, Li W, Fang W, Long X. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1- RAGE/TLR4-NF-κB/AKT pathway. J Cell Mol Med. 2022 ;26(3):925-36.
  • 23. Leskinen MH, Hautaniemi EJ, Tahvanainen AM, Koskela JK, Päällysaho M, Tikkakoski AJ, et al. Daily liquorice consumption for two weeks increases augmentation index and central systolic and diastolic blood pressure. PLoS One. 2014;9(8):e105607.
  • 24. Liu F, Yang X, Xing J, Han K, Sun Y. Glycyrrhizin potentially suppresses the inflammatory response in preeclampsia rat model. Pregnancy Hypertens. 2021 Mar; 23:34-40.
  • 25. Yang PS, Kim DH, Lee YJ, Lee SE, Kang WJ, Chang HJ, et al. Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats. Respir Res. 2014;25(15):148.
  • 26. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263- 302.
  • 27. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019; 307:41-8.
  • 28. Katerji M, Filippova M, Duerksen-Hughes P. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxid Med Cell Longev. 2019; 2019:1279250.
  • 29. Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research. 2010;3(1):91-100.
  • 30. Jacob RA. The integrated antioxidant system. Nutrition Research. 1995;15(5):755-66.
  • 31. Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G. Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(10):2003-11.
  • 32. Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine. 2022 May; 79:103992.
  • 33. Lv X, Zhu Y, Deng Y, Zhang S, Zhang Q, Zhao B, et al. Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology. 2020; 441:152508.
  • 34. Upadhyay S, Mantha AK, Dhiman M. Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes. J Ethnopharmacol. 2020; 258:112690.
  • 35. Choi HJ, Seon MR, Lim SS, Kim JS, Chun HS, Park JH. Hexane/ethanol extract of Glycyrrhiza uralensis licorice suppresses doxorubicin-induced apoptosis in H9c2 rat cardiac myoblasts. Exp Biol Med (Maywood). 2008;233(12):1554-60.
  • 36. Hibasami H, Iwase H, Yoshioka K, Takahashi H. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. Int J Mol Med. 2005;16(2):233-6.
APA ulutaş z, ALICI M, Ozhan O, Colak M, Yıldız A, ARSLAN A, TUNÇ S, Vardi N, Cigremis Y, Parlakpinar H (2023). The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. , 1276 - 1282. 10.5455/annalsmedres.2023.08.219
Chicago ulutaş zeynep,ALICI MUSTAFA,Ozhan Onural,Colak Mehmet Cengiz,Yıldız Azibe,ARSLAN Ahmet Kadir,TUNÇ Selahattin,Vardi Nigar,Cigremis Yilmaz,Parlakpinar Hakan The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. (2023): 1276 - 1282. 10.5455/annalsmedres.2023.08.219
MLA ulutaş zeynep,ALICI MUSTAFA,Ozhan Onural,Colak Mehmet Cengiz,Yıldız Azibe,ARSLAN Ahmet Kadir,TUNÇ Selahattin,Vardi Nigar,Cigremis Yilmaz,Parlakpinar Hakan The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. , 2023, ss.1276 - 1282. 10.5455/annalsmedres.2023.08.219
AMA ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. . 2023; 1276 - 1282. 10.5455/annalsmedres.2023.08.219
Vancouver ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. . 2023; 1276 - 1282. 10.5455/annalsmedres.2023.08.219
IEEE ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H "The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats." , ss.1276 - 1282, 2023. 10.5455/annalsmedres.2023.08.219
ISNAD ulutaş, zeynep vd. "The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats". (2023), 1276-1282. https://doi.org/10.5455/annalsmedres.2023.08.219
APA ulutaş z, ALICI M, Ozhan O, Colak M, Yıldız A, ARSLAN A, TUNÇ S, Vardi N, Cigremis Y, Parlakpinar H (2023). The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. Annals of Medical Research, 30(10), 1276 - 1282. 10.5455/annalsmedres.2023.08.219
Chicago ulutaş zeynep,ALICI MUSTAFA,Ozhan Onural,Colak Mehmet Cengiz,Yıldız Azibe,ARSLAN Ahmet Kadir,TUNÇ Selahattin,Vardi Nigar,Cigremis Yilmaz,Parlakpinar Hakan The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. Annals of Medical Research 30, no.10 (2023): 1276 - 1282. 10.5455/annalsmedres.2023.08.219
MLA ulutaş zeynep,ALICI MUSTAFA,Ozhan Onural,Colak Mehmet Cengiz,Yıldız Azibe,ARSLAN Ahmet Kadir,TUNÇ Selahattin,Vardi Nigar,Cigremis Yilmaz,Parlakpinar Hakan The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. Annals of Medical Research, vol.30, no.10, 2023, ss.1276 - 1282. 10.5455/annalsmedres.2023.08.219
AMA ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. Annals of Medical Research. 2023; 30(10): 1276 - 1282. 10.5455/annalsmedres.2023.08.219
Vancouver ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats. Annals of Medical Research. 2023; 30(10): 1276 - 1282. 10.5455/annalsmedres.2023.08.219
IEEE ulutaş z,ALICI M,Ozhan O,Colak M,Yıldız A,ARSLAN A,TUNÇ S,Vardi N,Cigremis Y,Parlakpinar H "The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats." Annals of Medical Research, 30, ss.1276 - 1282, 2023. 10.5455/annalsmedres.2023.08.219
ISNAD ulutaş, zeynep vd. "The protective effects of glycyrrhizin on doxorubicin-induced cardiotoxicity in rats". Annals of Medical Research 30/10 (2023), 1276-1282. https://doi.org/10.5455/annalsmedres.2023.08.219