Yıl: 2023 Cilt: 6 Sayı: 2 Sayfa Aralığı: 1353 - 1368 Metin Dili: Türkçe İndeks Tarihi: 01-11-2023

İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu

Öz:
Manyetik nanopartiküller birçok kullanım alanına sahip olup manyetik olarak saflaştırılabilirlik, geniş yüzey alanı, manyetik hedefleme, yüzey modifikasyonunda kolaylık gibi avantajları sayesinde son yıllarda ilgi çeken malzemelerden biri olmuştur. Gözenekli malzemeler ise, daha fazla açığa çıkan katalitik bölgelere ve geliştirilmiş yüzey işlevselliğine sahip bir malzemeye eldesine imkan sağlar. Ayrıca mezogözenekli Fe3O4 nanotüpleri sahip olduğu eşsiz yapısı sayesinde, bağlanacak ilaç hem destek malzemesinin dış yüzeyine hem de mezogözeneklerine girerek paketlenmiş yapıya benzer bir şekilde bağlanacaktır. Bu sayede hem ilacın yarılanma ömrünü uzatacak hem de parçalanma ürünlerinin hızlı serbestleşmesini engelleyeceğinden ilacın kontrollü bir şekilde taşınabilmesi için ideal bir sistem oluşturacaktır. Bu makalede ilaç hedeflemede kullanılmak üzere mezogözenekli Fe3O4 nanotüp sentezi yapılmıştır. Bu amaçla öncelikle mezogözenekli SiO2 üretimi yapılarak Fe3O4 üretiminde şablon olarak kullanılmıştır. Üretilen mezogözenekli SiO2 yüzeyine, [Fe(NH2CONH2)6](NO3)3 kompleksi kullanılarak Fe3O4 indirgenmiş ve ardından yapıdaki SiO2 liç edilerek mezogözenekli Fe3O4 nanotüp hazırlanmıştır. Hazırlanan malzemeler FESEM, FT-IR, BET, XRD ve TG yöntemleri ile analiz edilmiştir.
Anahtar Kelime: mezogözenekli SiO2 Mezogözenekli Fe3O4 nanotüp üre sol-jel yöntemi

Synthesis and Characterization of Novel Mesoporous Fe3O4 Nanotubes for Drug Delivery

Öz:
Magnetic nanoparticles have many uses and have become one of the materials that have attracted attention in recent years, thanks to their advantages such as magnetic purification, large surface area, magnetic targeting, and ease of surface modification. Porous materials, on the other hand, allow for a material with more exposed catalytic sites and improved surface functionality. In addition, thanks to the unique structure of mesoporous Fe3O4 nanotubes, the drug to be bound will enter both the outer surface of the support material and the mesopores and bind in a similar way to the packaged structure. In this way, it will create an ideal system for the controlled transport of the drug, as it will both prolong the half-life of the drug and prevent the rapid release of degradation products. In this article, mesoporous Fe3O4 nanotubes were synthesized to be used in drug targeting. For this purpose, firstly mesoporous SiO2 was produced and used as a template in Fe3O4 production. Fe3O4 was reduced to the produced mesoporous SiO2 surface by using [Fe(NH2CONH2)6](NO3)3 complex and then mesoporous Fe3O4 nanotube was prepared by leaching SiO2 in the structure. The prepared materials were analyzed by FESEM, FT-IR, BET, XRD and TG methods.
Anahtar Kelime: Mesoporous SiO2 Mesoporous Fe3O4 nanotubes Sol-gel method urea

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996; 271: 933-937.
  • Alksne JF., Fingerhut AG., Rand RW. Magnetic probe for the stereotactic thrombosis of intracranial aneurysms. Journal Neurol Neurosurg Psychiatry 1967; 30: 159-162.
  • Asuha S., Wan HL., Zhao S., Deligeer W., Wu HY., Song L., Tegus O. Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceramics International 2012; 38: 6579–6584.
  • Asuha S., Zhao S., Jin XH., Hai MM., Bao HP. Effects of synthetic routes of Fe–urea complex on the synthesis of γ-Fe2O3 nanopowder. Applied Surface Science 2009; 255: 8897-8901.
  • Charitidis CA., Georgiou P., Koklioti MA., Trompeta AF., Markakis V. Manufacturing nanomaterials: from research to industry. Manufacturing Review 2014; 1: 11.
  • Chen T., Zhou G., Zhu Q., Liu X., Ha T., Kelley JL., Kao RL., Williams DL., Li C. Overexpression of vascular endothelial growth factor 165 (VEGF165) protects cardiomyocytes against doxorubicin- induced apoptosis. Journal of Chemotherapy 2010; 22: 402-406.
  • Chen Y., Chen H., Sun Y., Zheng Y., Zeng D., Li F., Zhang S., Wang X., Zhang K., Ma M., He Q., Zhang L., Shi J. Multifunctional mesoporous composite nanocapsules for highly efficient MRI- guided high-intensity focused ultrasound cancer surgery. Angewandte Chemie International Edition 2011; 50: 12505-12509.
  • Cheng K., Peng S., Xu C. J., Sun S. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. Journal of the American Chemical Society 2009; 131: 10637- 10644.
  • Deng J., Feng SF., Zhang K., Li J., Wang H., Zhang T., Ma X. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH. Chemical Engineering Journal 2017; 308: 505-515.
  • Dubey RS., Rajesh YBRD., More MA. Synthesis and characterization of SiO2 nanoparticles via sol- gel method for industrial applications. Materials Today: Proceedings 2015; 2: 3575-3579.
  • Hilai SK., Michelsen WJ., Driller J., Leonard E. Magnetically guided devices for vascular exploration and treatment. Radiology 1974; 113: 529-540.
  • Jiao F., Harrison A., Jumas JC., Chadwick AV., Kockelmann W., Bruce PG. Ordered mesoporous Fe2O3 with crystalline walls. Journal of the American Chemical Society 2006; 128: 5468-5474.
  • Karatutlu A., Barhoum A., Sapelkin A. Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerging Applications of Nanoparticles and Architecture Nanostructures 2018; 1-28.
  • Kleinstreuer C., Feng Y., Childress E. Drug-targeting methodologies with applications: A review. World Journal of Clinical Cases 2014; 16: 742-756.
  • Manivannan M., Rajendran S. Investigation of inhibitive action of Urea-Zn2+ system in the corrosion control of carbon steel in sea water. International Journal of Engineering Science and Technology 2011; 3: 8048-8060.
  • Munshi, N., Rapoport, N., Pitt WG. Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Letter 1997; 16: 13-19. McBain SC., Yiu HHP., Dobson J. Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 2008; 3: 169-180.
  • Ozkaya T., Toprak MS., Baykal A., Kavas H., Köseoğlu Y., Aktaş B. Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization. Journal of Alloys and Compounds 2009; 472: 18- 23.
  • Piao Y., Kim J., Na HB., Kim D., Baek JS., Ko MK., Lee JH. Shokouhimehr M., Hyeon T. Wrap– bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials 2008; 7: 242-247.
  • Rapoport NY., Herron JN., Pitt WG., Pitina L. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. Journal of Controlled Release 1999; 58: 153-162.
  • Rapoport N., Marin AP., Timoshin AA. Effect of a polymeric surfactant on electron transport in HL- 60 cells. Archives of Biochemistry and Biophysics 2000; 384: 100-108.
  • Rapoport N., Marin A., Luo Y., Prestwich GD. Muniruzzaman M. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. Journal of Pharmaceutical Sciences 2002; 91: 157-170.
  • Rapoport N., Marin A., Muniruzzaman M., Christensen DA. Controlled drug delivery to drug- sensitive and multidrug resistant cells: effects of pluronic micelles and ultrasound. ACS Symposium Series. American Chemical Society 2003; 7: 85-101.
  • Rapoport N. Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids and Surfaces B: Biointerfaces 1999; 16: 93-111.
  • Senyei A., Widder K., Czerlinski G. Magnetic guidance of drug carrying microspheres. Journal of Applied Physics 1978; 49: 3578-3583.
  • Tadic M., Panjan M., Damnjanovic V., Milosevic I. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science 2014; 320: 183-187.
  • Wang Y., Xia Y. Bottom-Up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters 2004; 4: 2047-2050.
  • Wang Y., Yao S., Crocker M., Zhu X., Chen B., Xie J., Shi C., Ma D. An energy-efficient catalytic process for the tandem removal of formaldehyde and benzene by metal/HZSM-5 catalysts. Catalysis Science & Technology 2015; 5: 4968-4972.
  • Widder KJ., Marino PA., Morris RM., Howard DP., Poore GA., Senyei AE. Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: ultrastructural evaluation of microsphere disposition. European Journal of Cancer and Clinical Oncology 1983; 19: 141-147.
  • Xu J., Ouyang L., Mao W., Yang XJ., Xu XC., Su JJ., Zhuang TZ., Li H., Han YF. Operando and kinetic study of low-temperature, lean-burn methane combustion over a Pd/γ-Al2O3 catalyst. ACS Catalysis 2012; 2: 261-269.
  • Yadav TP., Yadav RM., Singh DP. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology 2012; 2: 22-48.
  • Zhang L., Liu T., Chen Y. Magnetic conducting polymer/mesoporous SiO2 yolk/shell nanomaterials: multifunctional nanocarriers for controlled release of doxorubicin. RSC Advances 2016; 6: 8572-8579.
  • Zhao J., Shu Y., Zhang P. Solid-state CTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry. Chinese Journal of Catalysis 2019; 40: 1078-1084.
APA ulusal f, ÖZDEMİR N (2023). İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. , 1353 - 1368.
Chicago ulusal fatma,ÖZDEMİR NALAN İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. (2023): 1353 - 1368.
MLA ulusal fatma,ÖZDEMİR NALAN İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. , 2023, ss.1353 - 1368.
AMA ulusal f,ÖZDEMİR N İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. . 2023; 1353 - 1368.
Vancouver ulusal f,ÖZDEMİR N İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. . 2023; 1353 - 1368.
IEEE ulusal f,ÖZDEMİR N "İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu." , ss.1353 - 1368, 2023.
ISNAD ulusal, fatma - ÖZDEMİR, NALAN. "İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu". (2023), 1353-1368.
APA ulusal f, ÖZDEMİR N (2023). İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 6(2), 1353 - 1368.
Chicago ulusal fatma,ÖZDEMİR NALAN İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 6, no.2 (2023): 1353 - 1368.
MLA ulusal fatma,ÖZDEMİR NALAN İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), vol.6, no.2, 2023, ss.1353 - 1368.
AMA ulusal f,ÖZDEMİR N İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2023; 6(2): 1353 - 1368.
Vancouver ulusal f,ÖZDEMİR N İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2023; 6(2): 1353 - 1368.
IEEE ulusal f,ÖZDEMİR N "İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu." Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 6, ss.1353 - 1368, 2023.
ISNAD ulusal, fatma - ÖZDEMİR, NALAN. "İlaç Taşımaya Yönelik Yeni Mezogözenekli Fe3O4 Nanotüplerin Sentezi ve Karakterizasyonu". Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 6/2 (2023), 1353-1368.