Yıl: 2022 Cilt: 5 Sayı: 2 Sayfa Aralığı: 919 - 942 Metin Dili: Türkçe DOI: 10.47495/okufbed.1051697 İndeks Tarihi: 01-11-2023

Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği

Öz:
Son on yılda uzay teknolojisinin gelişmesiyle birlikte uzaya yollanan yüksek çözünürlüklü ve kesintisiz gözlem yapabilen teleskoplar sayesinde hem yakın çevremizdeki hem de Evren’in derinliklerindeki gökcisimleri daha ayrıntılı olarak incelenmeye başlanmıştır. Bu çalışmalar arasında galaktik ve galaksi dışı gözlemler, Güneş’in atmosferinin incelenmesi ve ötegezegen araştırmaları başı çekmektedir. Bu araştırmalar için kullanılabilen önemli teleskoplardan ikisi STEREO ve TESS’dir. STEREO’nun asıl görevi Güneş’teki madde atımlarını takip etmek ve TESS’in görevi ise yeni ötegezenler keşfetmektir. Ancak bunların yanı sıra, bu teleskoplar arka planda bulunan milyonlarca yıldızın ışık değişimlerini gözleme özelliğine de sahiptir. Bu sayede yıldız astrofiziğinde oldukça önemli gelişmeler yaşanmaktadır. Bununla birlikte, çok sayıda yıldızın aynı anda gözlenmesiyle büyük veri kümeleri elde edilmeye başlanmış ve bunun sonucu olarak da bilgisayar kodlarının kullanıldığı otomatik veri işleme süreçleri ortaya çıkmıştır. Ancak bu süreç birçok sorunu da beraberinde getirmektedir. Çok sayıda ve çeşitli türdeki yıldızların analiz edilmeye çalışılması veri indirgeme ve analiz kodlarının aynı hassasiyetle çalışmasına izin vermemekte ve insan kaynaklı hataların da işin içine girmesine neden olmaktadır. Bu duruma uzay aracından kaynaklanan sorunlar da eklendiğinde elde edilen veride ve analiz sonuçlarında ciddi problemler ortaya çıkabilmektedir. Bu bağlamda, STEREO uydusundan elde edilen 41 tane Be türü yıldızın ışık eğrileri analiz edilmiş ve verilerde yıldızlardan kaynaklanmayan bir problem ile karşılaşılmıştır. Daha net bilgiler elde edebilmek için bu 41 yıldızdan TESS ile gözlenmiş olanlar belirlenmiş ve iki uydudan alınan ışık eğrileri karşılaştırılmıştır. Elde edilen sonuçlara dayanarak STEREO verilerindeki problem irdelenmiştir.
Anahtar Kelime: STEREO uydusu TESS uydusu Fotometri Veri analizi Astrosismoloji

Reliability of STEREO Satellite Data in Variable Star Photometry

Öz:
Thanks to space telescopes with high resolution and uninterrupted observations, celestial objects in our immediate surroundings and in the depths of the Universe have been studied in more detail for last ten years. Among these studies, galactic and extragalactic observations, solar atmosphere and exoplanet research are the leading ones. Two of the important telescopes available for these studies are STEREO and TESS. The main task of the STEREO is to follow coronal mass ejections while TESS's mission is to discover new exoplanets. These telescopes also have the ability to observe the light variations of millions of stars in the background. Therefore, significant advances have been made in stellar astrophysics. Yet, simultaneous observations of many stars cause large datasets to be obtained and consequently, automatic data processing processes using computer codes arise. This process brings several problems with it. Attempting to analyze many and various types of stars does not allow data reduction and analysis codes to work with the same precision and also causes human-induced errors to get involved. When spacecraft-related problems are added to this situation, serious problems may arise in the data obtained and in the results of the analysis. In this context, STEREO data of 41 Be type stars are analyzed and a problem not caused by the stars is encountered in the data. Afterwards, the ones observed with TESS are determined and the light curves taken from the two satellites are compared. Based on the results obtained, the problem in the STEREO data is scrutinized
Anahtar Kelime: STEREO satellite TESS satellite Photometry Data analysis Asteroseismology

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aerts C., Christensen-Dalsgaard J. and Kurtz D. W. Asteroseismology, Yayın evi: Springer, Berlin. 2010; 256-257.
  • Antoci V., Cunha MS., Bowman DM., Murphy SJ. The first view of Delta Scuti and Gamma Doradus stars with the TESS mission. Monthly Notices of the Royal Astronomical Society 2019; 490: 4040. doi: 10.1093/mnras/stz2787.
  • Baglin A., Vauclair G. The space stellar photometry mission COROT: Asteroseismology and search for extrasolar planets. Journal of Astrophysics and Astronomy 2000; 21: 319. doi: 10.1007/BF02702417.
  • Bakos GA., Lazar J., Papp I., Sari P., Green EM. System description and first light curves of the hungarian automated telescope, an autonomous observatory for variability search. Publications of the Astronomical Society of the Pacific 2002; 114: 974–987. doi: 10.1086/342382.
  • Balona LA., Ozuyar D. TESS observations of Be stars: General characteristics and the impulsive magnetic rotator model. The Astrophysical Journal 2021; 921: 5B. doi: 10.3847/1538- 4357/ac1a77.
  • Balona LA., Ozuyar D. Pulsation among TESS A and B stars and the Maia variables. Monthly Notices of the Royal Astronomical Society 2020; 493: 5871. doi: 10.1093/mnras/staa670.
  • Balona LA., Guzik JA., Uytterhoeven K., Smith JC., Tenenbaum P., Twicken JD. The Kepler view of Gamma Doradus stars. Monthly Notices of the Royal Astronomical Society 2011; 415: 3531– 3538. doi: 10.1111/j.1365-2966.2011.18973.x.
  • Baran, AS., Koen CA. Detection threshold in the amplitude spectra calculated from TESS time-series data. Acta Astronomica 2021; 71: 113–121. doi:10.32023/0001-5237/71.2.3.
  • Basri G., Walkowicz LM., Batalha N., Gilliland RL. Photometric variability in Kepler target stars: The Sun among stars - A first look. The Astrophysical Journal 2010; 713: L155–L159. doi: 10.1088/2041-8205/713/2/L155.
  • Batalha NM., Borucki WL., Bryson ST., Buchhave LA. Kepler’s first rocky planet: Kepler-10b. The Astrophysical Journal 2011; 729: 27. doi: 10.1088/0004-637X/729/1/27.
  • Belcheva M., Markov H., Tsvetanov Z., Iliev I., Stateva I. Physical parameters of eclipsing binary components, discovered by STEREO. Bulgarian Astronomical Journal 2015; 22: 28.
  • Bewsher D., Brown DS., Eyles CJ. Long-term evolution of the photometric calibration of the STEREO heliospheric imagers: I. HI-1. Solar Physics 2012; 276: 491–499. doi: 10.1007/s11207-011-9874-7.
  • Bewsher D., Brown DS., Eyles CJ., Kellett BJ., White GJ., Swinyard B. Determination of the photometric calibration and large-scale flat field of the STEREO heliospheric imagers: I. HI-1. Solar Physics 2010; 264: 433–460. doi: 10.1007/s11207-010-9582-8.
  • Blomme J., Debosscher J., De Ridder J., Aerts C. Automated classification of variable stars in the asteroseismology program of the Kepler space mission. The Astrophysical Journal 2010; 713: L204–L207. doi: 10.1088/2041-8205/713/2/L204.
  • Borucki WJ., Koch D., Basri G., Batalha N. Kepler planet-detection mission: Introduction and first results. Science 2010; 327: 977. doi: 10.1126/science.1185402.
  • Breger M., Stich J., Garrido R., Martin B. Nonradial pulsation of the Delta Scuti star BU CANCRI in the Praesepe cluster. Astronomy and Astrophysics 1993; 271: 482–486.
  • Brown DS., Bewsher D., Eyles CJ. Calibrating the pointing and optical parameters of the STEREO heliospheric imagers. Solar Physics 2009; 254: 185–225. doi: 10.1007/s11207-008-9277-6.
  • Bryson ST., Jenkins JM., Klaus TC., Cote MT. Kepler data processing handbook: Target and aperture definitions: Selecting pixels for Kepler downlink. Kepler Science Document KSCI-19081-003, id. 3. 2020. Editörler: Jon M. Jenkins.
  • Cameron C., Saio H., Kuschnig R., Walker GAH. MOST detects SPBe pulsations in HD 127756 and HD 217543: Asteroseismic rotation rates independent of vsini. The Astrophysical Journal 2008; 685: 489–507. doi: 10.1086/590369.
  • Chaturvedi P., Deshpande R., Dixit V., Roy A. Determination of mass and orbital parameters of a low- mass star HD 213597B. Monthly Notices of the Royal Astronomical Society 2014; 442: 3737– 3744. doi: 10.1093/mnras/stu1127.
  • Clarke BD., Caldwell DA., Quintana EV., Chandrasekaran H. Kepler data processing handbook: Pixel level calibrations. Kepler Science Document KSCI-19081-003, id. 5. 2020. Editörler: Jon M. Jenkins.
  • Eyles CJ., Harrison RA., Davis CJ., Waltham NR. The heliospheric imagers onboard the STEREO mission. Solar Physics 2009; 254: 387–445. doi: 10.1007/s11207-008-9299-0.
  • Holdsworth DL., Rushton MT., Bewsher D., Walter FM. STEREO/HI and optical observations of the classical nova V5583 Sagittarii. Monthly Notices of the Royal Astronomical Society 2014; 438: 3483–3489. doi: 10.1093/mnras/stt2455.
  • Holdsworth DL., Cunha MS., Kurtz DW., Antoci V. TESS cycle 1 observations of roAp stars with 2- min cadence data. Monthly Notices of the Royal Astronomical Society 2021; 506: 1073. doi: 10.1093/mnras/stab1578.
  • Howell SB., Sobeck C., Haas M., Still M. The K2 Mission: Characterization and early results. Publications of the Astronomical Society of the Pacific 2014; 126: 398. doi: 10.1086/676406.
  • Hubert AM., Floquet M. Investigation of the variability of bright Be stars using HIPPARCOS photometry. Astronomy and Astrophysics 1998; 335: 565–572.
  • Jenkins JM., Twicken JD., McCauliff S., Campbell J. The TESS science processing operations center. Software and Cyber infrastructure for Astronomy IV 9913. 2016. doi: 10.1117/12.2233418.
  • Jenkins JM. Kepler data processing handbook: Overview of the science operations center. Kepler Science Document KSCI-19081-002, 2017. id. 2, Editör: Jon M. Jenkins.
  • Kahraman Aliçavuş F., Poretti E., Catanzaro G., Smalley B. Spectroscopy of hot Gamma Doradus and A-F hybrid Kepler candidates close to the hot border of the Delta Scuti instability strip. Monthly Notices of the Royal Astronomical Society 2020; 493: 4518. doi: 10.1093/mnras/staa399.
  • Kim DW., Protopapas P., Alcock C., Byun YI., Bianco FB. Detrending time series for astronomical variability surveys. Monthly Notices of the Royal Astronomical Society 2009; 397: 558–568. doi: 10.1111/j.1365-2966.2009.14967.x.
  • Kovacs G., Bakos G., Noyes RW. A trend filtering algorithm for wide-field variability surveys. Monthly Notices of the Royal Astronomical Society 2005; 356: 557–567. doi: 10.1111/j.1365- 2966.2004.08479.x.
  • Labadie-Bartz J., Pepper J., McSwain MV., Bjorkman JE. Photometric variability of the Be star population. The Astronomical Journal 2017; 153: 252. doi: 10.3847/1538-3881/aa6396.
  • Matthews JM., Kuschnig R., Walker GAH., Pazder J. Johnson, R. Ultra precise photometry from space: The MOST microsat mission. IAU Colloq. 176: The Impact of Large-Scale Surveys on Pulsating Star Research 2000; 203: 74–75.
  • Michel E., Auvergne M., Baglin A., Catala C. Stellar variability from space with COROT: pulsation and binarity. Tidal Evolution and Oscillations in Binary Stars 2005; 333: 264.
  • Miglio A., Chiappini C., Morel T., Barbieri WJ. Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars. Monthly Notices of the Royal Astronomical Society 2013; 429: 423–428. doi: 10.1093/mnras/sts345.
  • Morris RL., Twicken JD., Smith JC., Clarke BD. Kepler data processing handbook: Photometric analysis. Kepler Science Document KSCI-19081-003, id. 6. 2020. Editörler: Jon M. Jenkins.
  • Neiner C., Hubert AM. The pulsations of Be stars. Communications in Asteroseismology 2009; 158: 194.
  • Neiner C., Floquet M., Hubert AM., Frémat Y. Rotation, pulsations and outbursts in the Be star HD 202904. Astronomy and Astrophysics 2005; 437: 257–272. doi: 10.1051/0004-6361:20041901.
  • Oelkers RJ., Stassun KG. Precision light curves from TESS full-frame images: A different imaging approach. The Astronomical Journal 2018; 156: 132. doi: 10.3847/1538-3881/aad68e.
  • Ozuyar D., Caliskan S., Stevens IR., Elmasli A. Photometric and spectroscopic variability of the Be star 48 Lib: The relation between photometric variations and rotation. Publications of the Astronomical Society of Australia 2018; 35: 34. doi: 10.1017/pasa.2018.38.
  • Paunzen E., Wraight KT., Fossati L., Netopil M., White GJ., Bewsher D. A photometric study of chemically peculiar stars with the STEREO satellites - II. Non-magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2013; 429: 119–125. doi: 10.1093/mnras/sts318.
  • Pojmanski G. The all sky automated survey. Catalog of about 3800 variable stars. Acta Astronomica 2000; 50: 177–190.
  • Pollacco D., Skillen I., Cameron A., Christian JI. The WASP project and SuperWASP camera. Astrophysics and Space Science 2006; 304: 253–255. doi: 10.1007/s10509-006-9124-x.
  • Porter JM., Rivinius T. Classical Be stars. Publications of the Astronomical Society of the Pacific 2003; 115: 1153–1170. doi: 10.1086/378307.
  • Pribulla T., Rucinski SM., Latham DW., Quinn SN. Eclipsing binaries in the MOST satellite fields. Astronomische Nachrichten 2010; 331: 397. doi: 10.1002/asna.201011351.
  • Ricker GR., Winn JN., Vanderspek R., Latham DW. Transiting exoplanet survey satellite (TESS). Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave 2014; 9143. doi: 10.1117/12.2063489.
  • Rivinius T., Baade D., Stefl S., Stahl O., Wolf B., Kaufer A. Stellar and circumstellar activity of the Be star MU Centauri. II. Multiperiodic low-order line-profile variability. Astronomy and Astrophysics 1998; 336: 177–190.
  • Saio H. A- and B-type star pulsations in the Kepler and CoRoT era: Theoretical considerations. Putting A stars into context: Evolution, environment, and related stars 2014; 305–313.
  • Sangaralingam V., Stevens IR. STEREO transiting exoplanet and stellar survey (STRESS) - I. introduction and data pipeline. Monthly Notices of the Royal Astronomical Society 2011; 418: 1325–1334. doi: 10.1111/j.1365-2966.2011.19581.x.
  • Socker DG., Howard RA., Korendyke CM., Simnett G. M., Webb D.F. NASA solar terrestrial relations observatory (STEREO) mission heliospheric imager. Instrumentation for UV/EUV Astronomy and Solar Missions 2000; 4139: 284–293. doi: 10.1117/12.410528.
  • Spreckley SA., Stevens IR. The period and amplitude changes of Polaris alpha UMi from 2003 to 2007 measured with SMEI. Monthly Notices of the Royal Astronomical Society 2008; 388: 1239–1244. doi: 10.1111/j.1365-2966.2008.13439.x.
  • Stassun KG., Oelkers RJ., Pepper J., Paegert M. The TESS input catalog and candidate target list. The Astronomical Journal 2018; 156: 102. doi: 10.3847/1538-3881/aad050.
  • Stumpe MC., Smith JC., Van Cleve JE., Twicken JD. Kepler presearch data conditioning I- architecture and algorithms for error correction in Kepler light curves. Publications of the Astronomical Society of the Pacific 2012; 124: 985. doi: 10.1086/667698.
  • Stumpe MC., Smith JC., Catanzarite JH., Van Cleve JE. Multiscale systematic error correction via wavelet-based band splitting in Kepler data. Publications of the Astronomical Society of the Pacific 2014; 126: 100. doi: 10.1086/674989.
  • Sullivan PW., Winn JN., Berta-Thompson ZK., Charbonneau D. The transiting exoplanet survey satellite: Simulations of planet detections and astrophysical false positives. The Astrophysical Journal 2015; 809: 77. doi: 10.1088/0004-637X/809/1/77.
  • Szabo R., Szabados L., Ngeow CC., Smolec R. Cepheid investigations using the Kepler space telescope. Monthly Notices of the Royal Astronomical Society 2011; 413: 2709–2720. doi: 10.1111/j.1365-2966.2011.18342.x.
  • Tappin SJ., Eyles CJ., Davies JA. Determination of the photometric calibration and large-scale flat field of the STEREO heliospheric imagers: II. HI-2. Solar Physics 2015; 290: 2143–2170. doi: 10.1007/s11207-015-0737-5.
  • Tappin SJ., Eyles CJ., Davies JA. On the long-term evolution of the sensitivity of the STEREO HI-1 cameras. Solar Physics 2017; 292: 28. doi: 10.1007/s11207-017-1052-0.
  • Valtonen MJ., Mikkola S., Lehto HJ., Gopakumar A., Hudec R., Polednikova J. Testing the black hole no-hair theorem with OJ287. The Astrophysical Journal 2011; 742: 22. doi: 10.1088/0004- 637X/742/1/22.
  • Whittaker GN., Stevens IR., Sangaralingam V. STEREO trend removal pipeline and planet detection possibilities. Monthly Notices of the Royal Astronomical Society 2013; 431: 3456–3469. doi: 10.1093/mnras/stt425.
  • Wraight KT., Fossati L., Netopil M., Paunzen E. A photometric study of chemically peculiar stars with the STEREO satellites - I. Magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2012a; 420: 757–772. doi: 10.1111/j.1365-2966.2011.20090.x.
  • Wraight KT., Bewsher D., White GJ., Nowotny W., Norton AJ., Paladini C. STEREO observations of long period variables. Monthly Notices of the Royal Astronomical Society 2012b; 426: 816– 832. doi: 10.1111/j.1365-2966.2012.21445.x.
  • Wraight KT., Fossati L., White GJ., Norton AJ., Bewsher D. Bright low mass eclipsing binary candidates observed by STEREO. Monthly Notices of the Royal Astronomical Society. 2012c; 427: 2298–2307. doi: 10.1111/j.1365-2966.2012.22102.x.
  • Wraight KT., White GJ., Bewsher D., Norton AJ. STEREO observations of stars and the search for exoplanets. Monthly Notices of the Royal Astronomical Society 2011; 416: 2477–2493. doi: 10.1111/j.1365-2966.2011.18599.x.
  • Zacharias N., Monet DG., Levine SE., Urban SE., Gaume R., Wycoff GL. The Naval Observatory Merged Astrometric Dataset (NOMAD). American Astronomical Society Meeting Abstracts. 2004.
APA Ozuyar D (2022). Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. , 919 - 942. 10.47495/okufbed.1051697
Chicago Ozuyar Dogus Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. (2022): 919 - 942. 10.47495/okufbed.1051697
MLA Ozuyar Dogus Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. , 2022, ss.919 - 942. 10.47495/okufbed.1051697
AMA Ozuyar D Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. . 2022; 919 - 942. 10.47495/okufbed.1051697
Vancouver Ozuyar D Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. . 2022; 919 - 942. 10.47495/okufbed.1051697
IEEE Ozuyar D "Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği." , ss.919 - 942, 2022. 10.47495/okufbed.1051697
ISNAD Ozuyar, Dogus. "Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği". (2022), 919-942. https://doi.org/10.47495/okufbed.1051697
APA Ozuyar D (2022). Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 5(2), 919 - 942. 10.47495/okufbed.1051697
Chicago Ozuyar Dogus Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 5, no.2 (2022): 919 - 942. 10.47495/okufbed.1051697
MLA Ozuyar Dogus Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), vol.5, no.2, 2022, ss.919 - 942. 10.47495/okufbed.1051697
AMA Ozuyar D Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2022; 5(2): 919 - 942. 10.47495/okufbed.1051697
Vancouver Ozuyar D Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2022; 5(2): 919 - 942. 10.47495/okufbed.1051697
IEEE Ozuyar D "Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği." Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 5, ss.919 - 942, 2022. 10.47495/okufbed.1051697
ISNAD Ozuyar, Dogus. "Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği". Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 5/2 (2022), 919-942. https://doi.org/10.47495/okufbed.1051697