Yıl: 2023 Cilt: 47 Sayı: 4 Sayfa Aralığı: 247 - 261 Metin Dili: İngilizce DOI: 10.55730/1300-0152.2660 İndeks Tarihi: 20-11-2023

Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population

Öz:
One of the most prevalent malignancies in women and one of the leading causes of cancer-related death is breast cancer. There is a need for new treatment approaches and drugs for breast cancer. Many studies show the high potential of triterpene compounds and their semisynthetic derivatives as anticancer agents due to their ability to induce apoptosis and suppress tumorigenesis. The effects of soloxolone methyl (SM), a semisynthetic derivative of 18-H-glycyrrhetinic acid, on the cytotoxicity and apoptosis of human breast cancer cell line (T-47D) and cancer stem cell (CSCs) population (mammospheres; CD44+/CD24-antigen) derived from breast cancer cells, were examined in this work. The ATP assay was used to determine SM growth-inhibitory effects. Fluorescent staining, caspase-cleaved cytokeratin 18, and flow cytometry analysis were used to determine the mode of the cell death. In addition, cell death was investigated at protein and gene levels by Western Blotting and PCR, respectively. SM resulted in cytotoxicity in a time and dose dependent manner via ROS production and ER stress in T-47D cells in 2 models. The mode of cell death was apoptosis, evidenced by phosphatidylserine exposure, caspase activation, and bax overexpression. In mammospheres as 3D model, SM decreased stem cell properties and induced cell death. Taken together, SM may be a promising agent in the treatment of breast cancer, especially due to its antigrowth activity on CSCs.
Anahtar Kelime: Mammosphere soloxolone methyl apoptosis breast cancer

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akgun O, Erkisa M, Ari F (2019). Effective and new potent drug combination: histone deacetylase and Wnt/β catenin pathway inhibitors in lung carcinoma cells. Journal of Cellular Biochemistry 120 (9): 15467-15482. https://doi. org/10.1002/jcb.28813
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 100 (7): 3983-3988. https://doi.org/10.1073/ pnas.0530291100
  • Alper P, Erkisa M, Genckal HM, Sahin S, Ulukaya E et al. (2019). Synthesis, characterization, anticancer and antioxidant activity of new nickel (II) and copper (II) flavonoid complexes. Journal of Molecular Structure 1196: 783-792. https://doi.org/10.1016/j.molstruc.2019.07.009
  • Alper P, Salomatina OV, Salakhutdinov NF, Ulukaya E, Ari F (2021). Soloxolone methyl, as a 18βH-glycyrrhetinic acid derivate, may result in endoplasmic reticulum stress to induce apoptosis in breast cancer cells. Bioorganic & Medicinal Chemistry 30: 115963. https://doi.org/10.1016/j. bmc.2020.115963
  • Ames BN, Gold LS, Willett WC (1995). The causes and prevention of cancer. Proceedings of the National Academy of Sciences 92 (12): 5258-5265. https://doi.org/ 10.1073/ pnas.92.12.5258
  • Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S et al. (2019). Synthesis and anticancer activity of CDDO and CDDO- Me, two derivatives of natural triterpenoids. Molecules, 24 (22): 409. https://doi.org/10.3390/molecules24224097
  • Cai Y, Zhao B, Liang Q, Zhang Y, Cai J et al. (2017). The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase II alpha and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells. European Journal of Pharmacology 809: 87-97. https://doi.org/10.1016/j.ejphar.2017.05.026
  • Choi CH, Jung YK, Oh SH (2010). Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Molecular Pharmacology 78 (1): 114-125. https://doi. org/10.1124/mol.110.063495
  • Connolly JD, Hill RA (2002). Triterpenoids. Natural Product Reports 19 (4): 494-513. https://doi.org/10.1039/b110404g
  • Cook SA, Sugden PH, Clerk A (1999). Regulation of BCL-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circulation Research 85 (10): 940-949. https://doi.org/10.1161/01.res.85.10.940
  • D’Amours D, Sallmann FR, Dixit VM, Poirier GG (2001). Gain- of-function of poly (ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. Journal of Cell Science 114 (20): 3771-3778. https://doi. org/10.1242/jcs.114.20.3771
  • De La Fuente M, Victor VM (2001). Ascorbic acid and N-acetylcysteine improve in vitro the function of lymphocytes from mice with endotoxin-induced oxidative stress. Free Radical Research 35 (1): 73-84. https://doi. org/10.1080/10715760100300611
  • De Moraes GN, Carvalho É, Maia RC, Sternberg C (2011). Immunodetection of caspase-3 by western blot using glutaraldehyde. Analytical Biochemistry 415 (2): 203-205. https://doi.org/10.1016/j.ab.2011.04.032
  • Done G, Ari F, Akgun O, Akgun H, Cevatemre B et al. (2022). The mechanism for anticancer and apoptosis inducing rpoperties of Cu (II) complex with quercetin and 1, 10 phenanthroline. Chemistry Select 7 (38): e202203242. https://doi.org/10.1002/slct.202203242
  • Erturk E, Arı F, Akgün O, Ulukaya E, Küçükali Cİ et al. (2021). Investigation of the efficacy of paclitaxel on some miRNAs profiles in breast cancer stem cells. Turkish Journal of Biology 45 (5): 613-623. https://doi.org/10.3906/biy-2103-46
  • Feng Y, Spezia M, Huang S, Yuan C, Zeng Z et al. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Diseases 5 (2): 77-106. https://doi.org/10.1016/j.gendis.2018.05.001
  • Ferlay J, Ervik M, Lam F, Colombet M, Mery L et al. (2019). Global cancer observatory: cancer tomorrow: International agency for research on cancer. Lyon, France.
  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J et al. (2007). ALDH1 is a marker of normal and malignant breast stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1 (5): 555-567. https://doi.org/10.1016/j. stem.2007.08.014
  • Haghshenas V, Fakhari S, Mirzaie S, Rahmani M, Farhadifar F et al. (2014). Glycyrrhetinic acid inhibits cell growth and induces apoptosis in ovarian cancer a2780 cells. Advanced Pharmaceutical Bulletin 4 (1): 437-441. https://doi. org/10.5681/apb.2014.064
  • Hibasami H, Iwase H, Yoshioka K, Takahashi H (2005). Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. International Journal of Molecular Medicine 16 (2): 233- 236. https://doi.org/10.3892/ijmm.16.2.233
  • Horwitz KB, Mockus MB, Lessey BA (1982). Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antiestrogen resistance. Cell 28 (3): 633-642. https://doi.org/10.1016/0092-8674(82)90218- 5
  • Klinge CM (2018). Non-coding RNAs in breast cancer: Intracellular and intercellular communication. Noncoding RNA 4 (4): 40. https://doi.org/10.3390/ncrna4040040
  • Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M et al. (2009). Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biology 7 (6): e1000121. https://doi.org/10.1371/journal.pbio.1000121
  • Lee CS, Kim YJ, Lee MS, Han ES, Lee SJ (2008). 18β-glycyrrhetinic acid induces apoptotic cell death in SiHa cells and exhibits a synergistic effect against antibiotic anti-cancer drugtoxicity. Life Sciences 83 (13-14): 481-489. https://doi. org/10.1016/j.lfs.2008.07.014
  • Li C , Heidt DG., Dalerba P, Burant CF, Zhang L et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research 67 (3): 1030-1037. https://doi.org/10.1158/0008- 5472.CAN-06-2030
  • Li X, Wang Y, Gao Y, Li L, Guo X et al. (2014). Synthesis of methyl 2-cyano-3,12-dioxo-18β-olean-1,9(11)-dien-30-oate analogues to determine the active groups for inhibiting cell growth and inducing apoptosis in leukemia cells. Organic & Biomolecular Chemistry 12 (34): 6706-6716. https://doi. org/10.1039/c4ob00703d
  • Liu S, Clouthier SG, Wicha MS (2012). Role of microRNAs in the regulation of breast cancer stemcells. Journal of Mammary Gland Biology Neoplasia 17 (1): 15-21. https:// doi.org/10.1007/s10911-012-9242-8
  • Logashenko EB, Salomatina OV, Markov AV, Korchagina DV, Salakhutdinov NF et al. (2011). Synthesis and pro apoptotic activity of novel glycyrrhetinic acid derivatives. ChemBioChem 12 (5): 784-794. https://doi.org/10.1002/ cbic.201000618
  • Makino T, Tsubouchi R, Murakami K, Haneda M, Yoshino M (2006). Generation of reactive oxygen species and induction of apoptosis of HL60 cells by ingredients of traditional herbal medicine, ho saiko to. Basic & Clinical Pharmacology & Toxicology 98 (4): 401-405. https://doi. org/10.1111/j.1742-7843.2006.pto_328.x
  • Malhotra JD, Kaufman RJ (2007). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell and Developmental Biology 18 (6): 716-731. https://doi. org/10.1016/j.semcdb.2007.09.003
  • Marciniak SJ, Ron D (2006). Endoplasmic reticulum stress signaling in disease. Physiological Reviews 86 (4): 1133- 1149. https://doi.org/10.1152/physrev.00015.2006
  • Markov AV, Sen’kova AV, Warszycki D, Salomatina OV, Salakhutdinov NF et al. (2017). Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Scientific Reports 7 (1): 13968. https://doi. org/10.1038/s41598-017-14029-0
  • Markov AV, Sen’kova AV, Zenkova MA, Logashenko EB (2018). Novel glycyrrhetinic acid derivative soloxolone methyl inhibits the inflammatory response and tumor growth in vivo. Molecular Biology 52 (2): 306-313. https://doi. org/10.7868/S0026898418020143
  • Markov AV, Kel AE, Salomatina OV, Salakhutdinov NF, Zenkova MA et al. (2019). Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: a transcriptome analysis. Oncotarget 10 (51): 5267-5297. https://doi.org/10.18632/ oncotarget.27085
  • Markov AV, Ilyina AA, Salomatina OV, Sen’kova AV, Okhina AA et al. (2022). Novel soloxolone amides as potent anti- glioblastoma candidates: Design, synthesis, in silico analysis and biological activities in vitro and in vivo. Pharmaceuticals (Basel) 15 (5): 603. https://doi.org/10.3390/ph15050603
  • Nomura T, Fukai T (1998). Phenolic constituents of licorice (Glycyrrhiza species). In: Kinghorn AD, Falk H, Kobayashi J (editors). Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products. Berlin, Germany: Springer-Verlag, pp.1-140.
  • Numazawa S, Sakaguchi H, Aoki R, Taira T, Yoshida T (2008). Regulation of the susceptibility to oxidative stress by cysteine availability in pancreatic beta-cells. American Journal of Physiology-Cell Physiology 295 (2): 468-474. https://doi.org/10.1152/ajpcell.00203.2008
  • Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP (2018). Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy Research 32 (12): 2323-2339. https://doi.org/10.1002/ ptr.6178
  • Pechánová O, Zicha J, Kojsová S, Dobesová Z, Jendeková L et al. (2006). Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clinical Science (London), 110 (2): 235-242. https://doi. org/10.1042/CS20050227
  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO et al. (2003). Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. Journal of Biological Chemistry 278 (39): 37832-37839. https://doi. org/10.1074/jbc.M301546200
  • Phillips TM, McBride WH, Pajonk F (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of National Cancer Institute 98 (24): 1777-1785. https://doi.org/10.1093/jnci/djj495
  • Ricci MS, Zong WX (2006). Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11 (4): 342-357. https://doi.org/10.1634/theoncologist.11-4-342.
  • Piggott L, Silva A, Robinson T, Santiago-Gómez A, Simões BM et al. (2018). Acquired resistance of ER-positive breast cancer to endocrine treatment confers an adaptive sensitivity to TRAIL through post–translational downregulation of c-FLIP. Clinical Cancer Research 24 (10): 2452-2463. https://doi.org/10.1158/1078-0432.CCR-17-1381
  • Roohbakhsh A, Iranshahy M, Iranshahi M (2016). Glycyrrhetinic acid and its derivatives: anti-cancer and cancer chemopreventive properties, mechanisms of action and structure-cytotoxic activity relationship. Current Medicinal Chemistry 23 (5): 498-517. https://doi.org/10.21 74/0929867323666160112122256
  • Salomatina OV, Sen’kova AV, Moralev AD, Savin IA, Komarova NI et al. (2022). Novel epoxides of soloxolone methyl: An effect of the formation of oxirane ring and stereoisomerism on cytotoxic profile, anti-metastatic and anti-inflammatory activities in vitro and in vivo. International Journal of Molecular Sciences 23 (11): 6214. https://doi.org/10.3390/ ijms23116214
  • Scheuner D, Kaufman RJ (2008). The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocrinology Reviews 29 (3): 317-333. https://doi.org/10.1210/er.2007-0039
  • Schröder M, Kaufman RJ (2005). ER stress and the unfolded protein response. Mutation Research 569 (1-2): 29-63. https://doi.org/10.1016/j.mrfmmm.2004.06.056
  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB et al. (2008). Cancer stem cells contribute to cisplatin resistance in Brca1/p53- mediated mouse mammary tumors. Cancer Research 68 (9): 3243-3250. http://doi.org/10.1158/0008-5472.CAN-07-5480
  • Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S et al. (1998). Irreversible binding of poly (ADP) ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Research 58 (16): 3495-3498.
  • Tian N, Rose RA, Jordan S, Dwyer TM, Hughson MD et al (2006). N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. Journal of Hypertension 24 (11): 2263-2270. http://doi.org/10.1097/01. hjh.0000249705.42230.73
  • Ulukaya E, Ozdikicioglu F, Yilmaztepe-Oral A, Demirci M (2008). The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicology in Vitro. 22 (1): 232-239. http://doi.org/10.1016/j.tiv.2007.08.006
  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P et al. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287 (5453): 664-666. http://doi.org/10.1126/ science.287.5453.664
  • Wang ZY, Nixon DW (2001). Licorice and cancer. Nutrition and Cancer 39 (1): 1-11. http://doi.org/10.1207/ S15327914nc391_1
  • Zembowicz A, Hatchett RJ, Radziszewski W, Gryglewski RJ (1993). Inhibition of endothelial nitric oxide synthase by ebselen. Prevention by thiols suggests the inactivation by ebselen of a critical thiol essential for the catalytic activity of nitric oxide synthase. Journal of Pharmacology and Experimental Therapeutics 267 (3): 1112-1118.
  • Zhang K, Kaufman RJ (2004). Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry 279 (25): 25935-25938. http://doi. org/10.1074/jbc.R400008200
  • Zhu J, Chen M, Chen N, Ma A, Zhu C et al. (2015). Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non- small cell lung cancer cells through endoplasmic reticulum stress pathway. International Journal of Oncology 46 (3): 981-988. http://doi.org/10.3892/ijo.2015.2819
APA Ertürk E, akgün o, Yıldız Y, alper p, Salomatina O, Salakhutdinov N, Ulukaya E, Ari F (2023). Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. , 247 - 261. 10.55730/1300-0152.2660
Chicago Ertürk Elif,akgün oğuzhan,Yıldız Yaren,alper pinar,Salomatina Oksana,Salakhutdinov Nariman,Ulukaya Engin,Ari Ferda Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. (2023): 247 - 261. 10.55730/1300-0152.2660
MLA Ertürk Elif,akgün oğuzhan,Yıldız Yaren,alper pinar,Salomatina Oksana,Salakhutdinov Nariman,Ulukaya Engin,Ari Ferda Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. , 2023, ss.247 - 261. 10.55730/1300-0152.2660
AMA Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. . 2023; 247 - 261. 10.55730/1300-0152.2660
Vancouver Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. . 2023; 247 - 261. 10.55730/1300-0152.2660
IEEE Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F "Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population." , ss.247 - 261, 2023. 10.55730/1300-0152.2660
ISNAD Ertürk, Elif vd. "Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population". (2023), 247-261. https://doi.org/10.55730/1300-0152.2660
APA Ertürk E, akgün o, Yıldız Y, alper p, Salomatina O, Salakhutdinov N, Ulukaya E, Ari F (2023). Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. Turkish Journal of Biology, 47(4), 247 - 261. 10.55730/1300-0152.2660
Chicago Ertürk Elif,akgün oğuzhan,Yıldız Yaren,alper pinar,Salomatina Oksana,Salakhutdinov Nariman,Ulukaya Engin,Ari Ferda Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. Turkish Journal of Biology 47, no.4 (2023): 247 - 261. 10.55730/1300-0152.2660
MLA Ertürk Elif,akgün oğuzhan,Yıldız Yaren,alper pinar,Salomatina Oksana,Salakhutdinov Nariman,Ulukaya Engin,Ari Ferda Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. Turkish Journal of Biology, vol.47, no.4, 2023, ss.247 - 261. 10.55730/1300-0152.2660
AMA Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. Turkish Journal of Biology. 2023; 47(4): 247 - 261. 10.55730/1300-0152.2660
Vancouver Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population. Turkish Journal of Biology. 2023; 47(4): 247 - 261. 10.55730/1300-0152.2660
IEEE Ertürk E,akgün o,Yıldız Y,alper p,Salomatina O,Salakhutdinov N,Ulukaya E,Ari F "Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population." Turkish Journal of Biology, 47, ss.247 - 261, 2023. 10.55730/1300-0152.2660
ISNAD Ertürk, Elif vd. "Soloxolone methyl induces apoptosis and oxidative/ER stress in breast cancer cells and target cancer stem cell population". Turkish Journal of Biology 47/4 (2023), 247-261. https://doi.org/10.55730/1300-0152.2660