Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 944 - 967 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3588 İndeks Tarihi: 21-11-2023

Fluid-based wearable sensors: a turning point in personalized healthcare

Öz:
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Anahtar Kelime: Biosensor tattoo sensors healthcare monitoring wearable sensors biofluids

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Murray RW, Ewing AG. Chemically Modified Electrodes for Electroanalysis. Analytical Chemistry 1987; 59: 379–390.
  • [2] Wang J. Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Plenary lecture Analyst 1994; 119 (5): 763-766.
  • [3] Bobacka J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 2006; 18: 7–18. https://doi.org/10.1002/ elan.200503384
  • [4] Wang J. Portable electrochemical systems. Trends in Analytical Chemistry 2002; 21: 226–232. https://doi.org/10.1016/S0165- 9936(02)00402-8
  • [5] Quesada-González D, Merkoçi A. Nanomaterial-based devices for point-of-care diagnostic applications. Chemical Society Reviews 2018; 47: 4697–4709. https://doi.org/10.1039/c7cs00837f
  • [6] Park S, Jayaraman S. Wearables: Fundamentals, advancements, and a roadmap for the future. Wearable sensors 2021; 3-27. https://doi. org/10.1016/B978-0-12-418662-0.00001-5
  • [7] Lymberis A, Gatzoulis L. Wearable health systems: from smart technologies to real applications. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006; 6789-6792. https://doi.org/10.1109/IEMBS.2006.260948
  • [8] Liu X, Tang C, Du X, Xiong S, Xi S et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons 2017; 4: 477-486. https://doi.org/10.1039/c7mh00104e
  • [9] Yang JC, Mun J, Kwon SY, Park S, Bao Z et al. Electronic Skin: Recent Progress and Future Prospects for Skin Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials 2019; 31: 1970337. https://doi.org/10.1002/adma.201904765
  • [10] Oh JY, Bao Z. Second skin enabled by advanced electronics. Advanced Science 2019; 6 (11): 1900186. https://doi.org/10.1002/ advs.201900186
  • [11] Wang C, Xia K, Wang H, Liang X, Yin Z et al. Advanced carbon for flexible and wearable electronics. Advanced materials 2019; 31 (9): 1801072. https://doi.org/10.1002/adma.201801072
  • [12] Mubashar A, Asghar K, Javed A R, Rizwan M, Srivastava G et al. Storage and proximity management for centralized personal health records using an IPFS-based optimization algorithm. Journal of Circuits, Systems and Computers 2022; 31 (1): 2250010. https://doi. org/10.1142/S0218126622500104
  • [13] Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: vision, state of the art, and challenges ahead. Journal of Parkinson’s disease 2021; 11 (1): 35-47. https://doi.org/10.3233/JPD- 202471
  • [14] Morris D, Coyle S, Wu Y, Lau KT, Wallace G et al. Bio-sensing textile-based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical 2009; 139 (1): 231-236. https://doi.org/10.1016/j.snb.2009.02.032
  • [15] Sempionatto JR, Nakagawa T, Pavinatto A, Mensah ST, Imani S et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab on a Chip 2017; 17 (10): 1834-1842. https://doi.org/10.1039/c7lc00192d
  • [16] Elsherif M, Hassan MU, Yetisen AK, Butt H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS nano 2018; 12 (6): 5452-5462. https://doi.org/10.1021/acsnano.8b00829
  • [17] Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016; 529 (7587): 509-514. https://doi.org/10.1038/nature16521
  • [18] Kim J, Imani S, Araujo WR, Warchall J, Valdés-Ramírez G et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics 2015; 74: 1061-1068. https://doi.org/10.1016/j.bios.2015.07.039
  • [19] Mishra RK, Hubble LJ, Martín A, Kumar R, Barfidokht A et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS sensors 2017; 2 (4): 553-561. https://doi.org/10.1021/acssensors.7b00051
  • [20] Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic- biosensing system. Acs Sensors 2016; 1 (8): 1011-1019. https://doi.org/10.1021/acssensors.6b00356
  • [21] Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnology 2014; 32: 363–371. https://doi. org/10.1016/j.tibtech.2014.04.005
  • [22] Wang Y, Wang L, Yang T, Li X, Zang X et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials 2014; 24 (29): 4666-4670. https://doi.org/10.1002/adfm.201400379
  • [23] Bingger P, Zens M, Woias P. Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring. Biomedical microdevices 2012; 14: 573-581. https://doi.org/10.1007/s10544-012-9636-9
  • [24] Rodgers MM, Pai VM, Conroy RS. Recent advances in wearable sensors for health monitoring. IEEE Sensors Journal 2014; 15 (6): 3119- 3126. https://doi.org/10.1016/j.sbsr.2016.11.004
  • [25] Amjadi M, Pichita Jongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS nano 2014; 8 (5): 5154-5163. https://doi.org/10.1021/nn501204t
  • [26] Li M, Li H, Zhong W, Zhao Q, Wang D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS applied materials & interfaces 2014; 6 (2): 1313-1319. https://doi.org/10.1021/am4053305
  • [27] Harada S, Kanao K, Yamamoto Y, Arie T, Akita S et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS nano 2014; 8 (12): 12851-12857. https://doi.org/10.1007/s10854-009-0049-3
  • [28] Tseng RC, Chen CC, Hsu SM, Chuang HS. Contact-lens biosensors. Sensors 2018; 18 (8): 2651. https://doi.org/10.3390/s18082651
  • [29] Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nature Electronics 2018; 1 (3): 160-171. https://doi.org/10.1038/s41928-018-0043-y
  • [30] Aguirre A, Testa-Weintraub LA, Banderas JA, Haraszthy GG, Reddy MS et al. Sialochemistry: a diagnostic tool. Critical Reviews in Oral Biology & Medicine 1993; 4 (3): 343-350. https://doi.org/10.1177/10454411930040031201
  • [31] Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry 2001; 85 (2): 162-169. https://doi.org/10.1067/mpr.2001.113778
  • [32] Lee JM, Garon E, Wong DT. Salivary diagnostics. Orthodontics & craniofacial research 2009; 12 (3): 206-211. https://doi.org/10.1111/j.1601- 6343.2009.01454.x
  • [33] Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology 2010; 138 (3): 949-957. https://doi.org/10.1053/j.gastro.2009.11.010
  • [34] Hu S, Wang J, Meijer J, Ieong S, Xie Y et al. Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 2007; 56 (11): 3588-3600. https://doi.org/10.1002/art.22954
  • [35] Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL et al. Graphene-based wireless bacteria detection on tooth enamel. Nature communications 2012; 3 (1): 763. https://doi.org/10.1038/ncomms1767
  • [36] Preston AJ, Edgar WM. Developments in dental plaque pH modelling. Journal of dentistry 2005; 33 (3): 209-222. https://doi.org/10.1016/j. jdent.2004.10.008
  • [37] Schabmueller CGJ, Loppow D, Piechotta G, Schütze B, Albers J et al. Micromachined sensor for lactate monitoring in saliva. Biosensors and Bioelectronics 2016; 21 (9): 1770-1776. https://doi.org/10.1016/j.bios.2005.09.015
  • [38] Tékus É, Kaj M, Szabó E, Szénási N, Kerepesi I et al. Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biologica Hungarica 2012; 63 (1): 89-98. https://doi.org/10.1556/ABiol.63.2012
  • [39] Zagatto AM, Papoti M, Caputo F, Mendes ODC, Denadai BS et al. Comparison between the use of saliva and blood for the minimum lactate determination in arm ergometer and cycle ergometer in table tennis players. Revista Brasileira de Medicina do Esporte 2004; 10: 475-480. https://doi.org/10.1590/s1517-86922004000600004
  • [40] Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S et al. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Analytical Chemistry 2020; 92 (18): 12201-12207. https://doi.org/10.1021/acs.analchem.0c01201
  • [41] Li Y, Tang H, Liu Y, Qiao Y, Xia H et al. Oral wearable sensors: health management based on the oral cavity. Biosensors and Bioelectronics: X 2022; 10: 100135. https://doi.org/10.1016/j.biosx.2022.100135
  • [42] Garcia-Carmona L, Martin A, Sempionatto JR, Moreto JR, Gonzalez MC et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Analytical chemistry 2019; 91 (21): 13883-13891. https://doi.org/10.1021/acs.analchem.9b03379
  • [43] Parrilla M, Vanhooydonck A, Watts R, De Wael K. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. Biosensors and Bioelectronics 2022; 197: 113764. https://doi.org/10.1016/j.bios.2021.113764
  • [44] Tseng P, Napier B, Garbarini L, Kaplan D L, Omenetto F G. Functional, RF trilayer sensors for tooth mounted, wireless monitoring of the oral cavity and food consumption. Advanced Materials 2018; 30 (18): 1703257. https://doi.org/10.1002/adma.201703257
  • [45] Mishra RK, Sempionatto JR, Li Z, Brown C, Galdino NM et al. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta 2020; 211: 120757. https://doi.org/10.1016/j.talanta.2020.120757
  • [46] Zhang W, Du Y, Wang M L. Noninvasive glucose monitoring using saliva nano-biosensor. Sensing and Bio-Sensing Research 2015; 4: 23-29. https://doi.org/10.1016/j.sbsr.2015.02.002
  • [47] Eom KS, Lee YJ, Seo HW, Kang JY, Shim JS et al. Sensitive and non-invasive cholesterol determination in saliva via optimization of enzyme loading and platinum nano-cluster composition. Analyst 2020; 145 (3): 908-916. https://doi.org/10.1039/C9AN01679A
  • [48] Wilke K, Martin A, Terstegen L, Biel S S. A short history of sweat gland biology. International journal of cosmetic science 2007; 29 (3): 169- 179. https://doi.org/10.1111/j.1467-2494.2007.00387.x
  • [49] Speedy DB, Noakes TD, Schneider C. Exercise associated hyponatremia: a review. Emergency Medicine 2001; 13 (1): 17-27. https://doi. org/10.1046/j.1442-2026.2001.00173.x
  • [50] Talary MS, Dewarrat F, Huber D, Caduff A. In vivo life sign application of dielectric spectroscopy and non-invasive glucose monitoring. Journal of Non-Crystalline Solids 2007; 353 (47-51): 4515-4517. https://doi.org/10.1016/j.jnoncrysol.2007.03.038
  • [51] Derbyshire PJ, Barr H, Davis F, Higson SP. Lactate in human sweat: a critical review of research to the present day. The journal of physiological sciences 2012; 62 (6): 429-440. https://doi.org/10.1007/s12576-012-0213-z
  • [52] Yang Y, Song Y, Bo X, Min J, Pak O S et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature biotechnology 2020; 38 (2): 217-224. https://doi.org/10.1038/s41587-019-0321-x
  • [53] Marques-Deak A, Cizza G, Eskandari F, Torvik S, Christie IC et al. Measurement of cytokines in sweat patches and plasma in healthy women: validation in a controlled study. Journal of immunological methods 2006; 315 (1-2): 99-109. https://doi.org/10.1016/j.jim.2006.07.011
  • [54] Cizza G, Marques AH, Eskandari F, Christie IC, Torvik S et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission. Biological psychiatry 2008; 64 (10): 907-911. https://doi.org/10.1016/j.biopsych.2008.05.035
  • [55] Emaminejad S, Gao W, Wu E, Davies ZA, Yin Yin Nyein H et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proceedings of the National Academy of Sciences 2017; 114 (18): 4625-4630. https://doi. org/10.1073/pnas.1701740114
  • [56] Steinberg MD, Kassal P, Steinberg IM. System architectures in wearable electrochemical sensors. Electroanalysis 2016; 28 (6): 1149-1169. https:// doi.org/10.1002/elan.201600094
  • [57] Jagannath B, Lin KC, Pali M, Sankhala D, Muthukumar S et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioengineering & translational medicine 2021; 6 (3): e10220. https://doi.org/10.1002/btm2.10220
  • [58] Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016; 529 (7587): 509-514. https://doi.org/10.1038/NATURE16521
  • [59] Ghoorchian A, Kamalabadi M, Moradi M, Madrakian T, Afkhami A et al. Wearable potentiometric sensor based on Na0. 44MnO2 for non- invasive monitoring of sodium ions in sweat. Analytical Chemistry 2022; 94 (4): 2263-2270. https://doi.org/10.1021/acs.analchem.1c04960
  • [60] Bariya M, Li L, Ghattamaneni R, Ahn CH, Nyein HYY et al. Glove-based sensors for multimodal monitoring of natural sweat. Science advances 2020; 6 (35): eabb8308. https://doi.org/10.1126/sciadv.abb8308
  • [61] Lee H, Song C, Hong YS, Kim M, Cho HR et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science advances 2017; 3 (3): e1601314. https://doi.org/10.1126/sciadv.1601314
  • [62] Bolat G, De la Paz E, Azeredo NF, Kartolo M, Kim J et al. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Analytical and Bioanalytical Chemistry 2022; 414 (18): 5411-5421. https://doi.org/10.1007/s00216-021-03865-9
  • [63] Liu Y, Zhong L, Zhang S, Wang J, Liu Z. An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sensors and Actuators B: Chemical 2022; 354: 131204. https://doi.org/10.1016/j.snb.2021.131204
  • [64] Nyein HYY, Bariya M, Tran B, Ahn CH, Brown BJ et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nature communications 2021; 12 (1): 1823. https://doi.org/10.1038/s41467-021-22109-z
  • [65] Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Advanced Science 2018; 5 (10): 1800880. https://doi.org/10.1002/advs.201800880
  • [66] Nyein HYY, Tai LC, Ngo QP, Chao M, Zhang GB et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS sensors 2018; 3 (5): 944-952. https://doi.org/10.1021/acssensors.7b00961
  • [67] Cui Y, Duan W, Jin Y, Wo F, Xi et al. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS sensors 2020; 5 (7): 2096-2105. https://doi.org/10.1021/acssensors.0c00718
  • [68] Bandodkar AJ, Molinnus D, Mirza O, Guinovart T, Windmiller J R et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and bioelectronics 2014; 54: 603-609. https://doi.org/10.1016/j. bios.2013.11.039
  • [69] Pankratov D, González Arribas E, Blum Z, Shleev S. Tear based bioelectronics Electroanalysis 2016; 28 (6): 1250-1266. https://doi.org/10.1002/ elan.201501116.
  • [70] Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clinica chimica acta 2006; 369 (1): 17-28. https://doi.org/10.1016/j. cca.2005.12.035
  • [71] Unno Y, Affolder AA, Allport PP, Bates R, Betancourt C et al. Development of n-on-p silicon sensors for very high radiation environments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011; 636 (1): 24-30. https://doi.org/10.1016/j.nima.2010.04.080
  • [72] Choi DH, Li Y, Cutting GR, Searson PC. A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sensors and Actuators B: Chemical 2017; 250: 673-678. https://doi.org/10.1016/j.snb.2017.04.129
  • [73] Gao N, Cai Z, Chang G, He Y. Non-invasive and wearable glucose biosensor based on gel electrolyte for detection of human sweat. Journal of Materials Science 2023; 1-12. https://doi.org/10.1007/s10853-022-08095-7
  • [74] Wang J, Wang L, Li G, Yan D, Liu C et al. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS sensors 2022; 7 (10): 3102-3107. https://doi.org/10.1021/acssensors.2c01533
  • [75] Yoon S, Yoon H, Zahed M A, Park C, Kim D et al. Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosensors and Bioelectronics 2022; 196: 113685. https://doi.org/10.1016/j.bios.2021.113685
  • [76] Nan M, Darmawan BA, Go G, Zheng S, Lee J et al. Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat. Biosensors 2023; 13 (2): 184. https://doi.org/10.3390/bios13020184
  • [77] Zhao K, Kang B, La M. Wearable Electrochemical Sensors for the Detection of Organic Metabolites and Drugs in Sweat. International Journal of Electrochemical Science 2022; 17 (220534): 2. https://doi.org/10.20964/2022.05.36
  • [78] Kaya T, Liu G, Ho J, Yelamarthi K, Miller K et al. Wearable sweat sensors: background and current trends. Electroanalysis 2019; 31 (3): 411-421. https://doi.org/10.1002/elan.201800677
  • [79] Tseng RC, Chen CC, Hsu SM, Chuang HS. Contact-lens biosensors. Sensors 2018; 18 (8): 2651. https://doi.org/10.3390/s18082651
  • [80] Kim J, Kim M, Lee MS, Kim K, Ji S et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature communications 2017; 8 (1): 14997. https://doi.org/10.1038/ncomms14997
  • [81] Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH. Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials 2015; 4:792–810. https://doi.org/10.1002/adhm.201400504
  • [82] Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C et al. In-depth analysis of the human tear proteome. Journal of Proteomics 2012; 75:3877–3885. https://doi.org/10.1016/j.jprot.2012.04.053
  • [83] Kim J, Campbell AS, F. de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nature Biotechnology 2019; 37:389–406. https://doi.org/10.1038/s41587-019-0045-y
  • [84] Gao B, He Z, He B, Gu Z. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. Sensors and Actuators B Chemical 2019; 288:734–741. https://doi.org/10.1016/j.snb.2019.03.029
  • [85] Keum DH, Kim SK, Koo J, Lee GH, Jeon C et al. Wireless smart contact lens for diabetic diagnosis and therapy. Science Advances 2020; 6: 1–13. https://doi.org/10.1126/sciadv.aba3252
  • [86] Park S, Hwang J, Jeon HJ, Bae WR, Jeong IK. Cerium Oxide Nanoparticle-Containing Colorimetric Contact Lenses for Noninvasively Monitoring Human Tear Glucose. ACS Applied Nano Materials 2021; 4: 5198–5210. https://doi.org/10.1021/acsanm.1c00603
  • [87] Moreddu R, Wolffsohn JS, Vigolo D, Yetisen AK. Laser-inscribed contact lens sensors for the detection of analytes in the tear fluid. Sensors and Actuators B Chemical 2020; 317: 128183. https://doi.org/10.1016/j.snb.2020.128183
  • [88] Kim J, Kim M, Lee M S, Kim K, Ji S et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature communications 2017; 8. https://doi.org/10.1038/ncomms14997
  • [89] Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosensors and Bioelectronics 2019; 137: 161–170. https://doi.org/10.1016/j.bios.2019.04.058
  • [90] Yu L, Yang Z, An M. Lab on the eye: A review of tear-based wearable devices for medical use and health management. BioScience Trends 2019; 13: 308–313. https://doi.org/10.5582/bst.2019.01178
  • [91] Xu J, Tao X, Liu X, Yang L. Wearable Eye Patch Biosensor for Noninvasive and Simultaneous Detection of Multiple Biomarkers in Human Tears. Analytical Chemistry 2022; 94: 8659–8667. https://doi.org/10.1021/acs.analchem.2c00614
  • [92] Kajisa T, Sakata T. Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Science and Technology of Advanced Materials 2017; 18: 26–33. https://doi.org/10.1080/14686996.2016.1257344
  • [93] Zhou F, Zhao H, Chen K., Cao S, Shi Z et al. Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. Analytica Chimica Acta 2023; 1243: 340781. https://doi.org/10.1016/j.aca.2023.340781
  • [94] Huang C, Hao Z, Wang Z, Wang H, Zhao X et al. An Ultraflexible and Transparent Graphene-Based Wearable Sensor for Biofluid Biomarkers Detection. Advanced Materials Technologies 2022; 7: 1–8. https://doi.org/10.1002/admt.202101131
  • [95] Deng M, Song G, Zhong K, Wang Z, Xia X et al. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sensors and Actuators, B: Chemical 2022; 352: 131067. https://doi.org/10.1016/j.snb.2021.131067
  • [96] Kalasin S, Sangnuang P, Surareungchai W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Analytical Chemistry 2021; 93: 10661–10671. https://doi. org/10.1021/acs.analchem.1c02085
  • [97] Heikenfeld J, Jajack A, Feldman B, Granger SW, Gaitonde S et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nature Biotechnology 2019; 37: 407–419. https://doi.org/10.1038/s41587-019-0040-3
  • [98] Kolluru C, Williams M, Chae J, Prausnitz MR. Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch. Advanced Healthcare Materials 2019; 8. https://doi.org/10.1002/adhm.201801262
  • [99] Teymourian H, Tehrani F, Mahato K, Wang J. Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials 2021; 10: 1–19. https://doi.org/10.1002/adhm.202002255
  • [100] Nilsson AK, Sjöbom U, Christenson K, Hellström A. Lipid profiling of suction blister fluid: Comparison of lipids in interstitial fluid and plasma. Lipids in Health and Disease 2019; 18: 1–11. https://doi.org/10.1186/s12944-019-1107-3
  • [101] Tran BQ, Miller PR, Taylor RM, Boyd G, Mach PM et al. Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique. Journal of Proteome 2018; 17: 479–485. https://doi.org/10.1021/acs.jproteome.7b00642
  • [102] Miller PR, Taylor RM, Tran BQ, Boyd G, Glaros T et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Communications Biology Latest Journal 2018. https://doi.org/10.1038/s42003-018-0170-z
  • [103] Rao G, Guy RH, Glikfeld P, LaCourse WR, Leung L et al. Reverse Iontophoresis: Noninvasive Glucose Monitoring in Vivo in Humans. Pharmaceutical research 1995; 12: 1869–1873. https://doi.org/10.1023/A:1016271301814
  • [104] Kost J, Mitragotri S, Gabbay RA, Pishko M, Langer R. Transdermal monitoring of glucose and other analytes using ultrasound. Nature Medicine 2000; 6: 347–350. https://doi.org/10.1038/73213
  • [105] Bandodkar A J, Jia W, Yardımcı C, Wang X, Ramirez J et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Analytical chemistry 2015; 87 (1): 394-398. https://doi.org/10.1021/ac504300n
  • [106] Sharma S, El-Laboudi A, Reddy M, Jugnee N, Sivasubramaniyam S et al. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Analytical Methods 2018; 10 (18): 2088-2095. https://doi.org/10.1039/c8ay00264a
  • [107] Tasca F, Tortolini C, Bollella P, Antiochia R. Microneedle-based electrochemical devices for transdermal biosensing: a review. Current Opinion in Electrochemistry 2019; 16: 42-49. https://doi.org/10.1016/j.coelec.2019.04.003
  • [108] Cheng Y, Gong X, Yang J, Zheng G, Zheng Y et al. A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosensors and Bioelectronics 2022; 203: 114026. https://doi.org/10.1016/j.bios.2022.114026
  • [109] Lipani L, Dupont BG, Doungmene F, Marken F, Tyrrell RM et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nature nanotechnology 2018; 13 (6): 504-511. https://doi.org/10.1038/s41565-018-0112-4
  • [110] Teymourian H, Moonla C, Tehrani F, Vargas E, Aghavali R et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Analytical chemistry 2019; 92 (2): 2291-2300. https://doi.org/10.1021/acs.analchem.9b05109
  • [111] Bollella P, Sharma S, Cass AE, Tasca F, Antiochia R. Minimally invasive glucose monitoring using a highly porous gold microneedles-based biosensor: Characterization and application in artificial interstitial fluid. Catalysts 2019; 9 (7): 580. https://doi.org/10.3390/catal9070580
  • [112] Sempionatto JR, Lin M, Yin L, De la Paz E, Pei K et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering 2021; 5 (7) :737-748. https://doi.org/10.1038/s41551-021-00685-1
  • [113] Yao Y, Chen J, Guo Y, Lv T, Chen Z et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non- invasive blood glucose sensors. Biosensors and Bioelectronics 2021; 179: 113078. https://doi.org/10.1016/j.bios.2021.113078
  • [114] Goud KY, Moonla C, Mishra RK, Yu C, Narayan R et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS sensors 2019; 4 (8): 2196-2204. https://doi.org/10.1021/acssensors.9b01127
  • [115] Mohan AV, Windmiller JR, Mishra RK, Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors and Bioelectronics 2017; 91: 574-579. https://doi.org/10.1016/j.bios.2017.01.016
  • [116] Senel M, Dervisevic M, Voelcker NH. Gold microneedles fabricated by casting of gold ink used for urea sensing. Materials Letters 2019; 243: 50-53. https://doi.org/10.1016/j.matlet.2019.02.014
  • [117] Zheng Y, Omar R, Zhang R, Tang N, Khatib M et al. A Wearable Microneedle Based Extended Gate Transistor for Real Time Detection of Sodium in Interstitial Fluids. Advanced Materials 2022; 34 (10): 2108607. https://doi.org/10.1002/adma.202108607
  • [118] Mei R, Wang Y, Shi S, Zhao X, Zhang Z et al. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Analytical Chemistry 2022; 94 (46): 16069-16078.https://doi.org/10.1021/acs.analchem.2c03208
  • [119] Mei R, Wang Y, Zhao X, Shi S, Wang X et al. Skin Interstitial Fluid-Based SERS Tags Labeled Microneedles for Tracking of Peritonitis Progression and Treatment Effect. ACS sensors 2023. https://doi.org/10.1021/acssensors.2c02409
  • [120] Park S, Kim YJ, Kostal E, Matylitskaya V, Partel S et al. Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensors. Biosensors and Bioelectronics 2023; 220: 114912. https://doi.org/10.1016/j.bios.2022.114912
  • [121] Yang B, Fang X, Kong J. Engineered microneedles for interstitial fluid cell free DNA capture and sensing using iontophoretic dual extraction wearable patch. Advanced Functional Materials 2020; 30 (24): 2000591. https://doi.org/10.1002/adfm.202000591
  • [122] Tortolini C, Cass AE, Pofi R, Lenzi A, Antiochia R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Microchimica Acta 2022; 189 (5): 180. https://doi.org/10.1007/s00604-022-05260-2
  • [123] Dervisevic M, Dervisevic E, Esser L, Easton CD, Cadarso VJ et al. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosensors and Bioelectronics 2023; 222: 114955. https://doi.org/10.1016/j.bios.2022.114955
  • [124] Qiao Y, Du J, Ge R, Lu H, Wu C et al. A sample and detection microneedle patch for psoriasis MicroRNA biomarker analysis in interstitial fluid. Analytical Chemistry 2022; 94 (14): 5538-5545. https://doi.org/10.1021/acs.analchem.1c04401
  • [125] Zheng L, Zhu D, Wang W, Liu J, Thng STG et al. A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sensors and Actuators B: Chemical 2022; 372: 132626. https://doi.org/10.1016/j.snb.2022.132626
  • [126] Kemp E, Palomäki T, Ruuth IA, Boeva ZA, Nurminen TA et al. Influence of enzyme immobilization and skin-sensor interface on non- invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction. Biosensors and Bioelectronics 2022; 206: 114123. https://doi.org/10.1016/j.bios.2022.114123
  • [127] Mahato K, Wang J. Electrochemical sensors: From the bench to the skin. Sensors and Actuators B: Chemical 2021; 344: 130178. https:// doi.org/10.1016/j.snb.2021.130178
  • [128] Gao W, Nyein HY, Shahpar Z, Tai LC, Wu E et al. Wearable sweat biosensors. In 2016 IEEE International Electron Devices Meeting (IEDM) 2016; (pp. 6-6). IEEE. https://doi.org/10.1109/IEDM.2016.7838363
  • [129] Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell E J et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proceedings of the National Academy of Sciences 2014; 111 (33): 11984-11989. https://doi.org/10.1073/ pnas.1405679111
  • [130] Koh A, Kang D, Xue Y, Lee S, Pielak RM et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science translational medicine 2016; 8 (366): 366ra165-366ra165. https://doi.org/10.1126/scitranslmed.aaf2593
  • [131] Pfeiffer F, Mayer G. Selection and biosensor application of aptamers for small molecules. Frontiers in chemistry 2016; 4: 25. https://doi. org/10.3389/fchem.2016.00025
  • [132] Sempionatto JR, Montiel VRV, Vargas E, Teymourian H, Wang J. Wearable and mobile sensors for personalized nutrition. ACS sensors 2021; 6 (5): 1745-1760. https://doi.org/10.1021/acssensors.1c00553
  • [133] Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials 2016; 26 (11): 1678-1698. https://doi.org/10.1002/adfm.201504755
  • [134] de Castro LF, de Freitas SV, Duarte LC, de Souza JAC et al. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Analytical and bioanalytical chemistry 2019; 411: 4919-4928. https://doi.org/10.1007/s00216-019-01788-0
  • [135] Lim HR, Lee SM, Mahmood M, Kwon S, Kim YS et al. Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection. Sensors 2021; 21 (5): 1642. https://doi.org/10.3390/s21051642
  • [136] Kumar V, Gill KD, Kumar V, Gill KD. Blood collection and preservation. Basic Concepts in Clinical Biochemistry: A Practical Guide 2018; 5–7. https://doi.org/10.1007/978-981-10-8186-6_2
  • [137] Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 2014; 139 (7): 1632-1636. https://doi.org/10.1039/c3an02359a
  • [138] He X, Xu T, Gu Z, Gao W, Xu LP et al. Flexible and superwettable bands as a platform toward sweat sampling and sensing. Analytical chemistry 2019; 91 (7): 4296-4300. https://doi.org/10.1021/acs.analchem.8b05875
  • [139] Huang X, Liu Y, Chen K, Shin WJ, Lu CJ et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014; 10 (15): 3083-3090. https://doi.org/10.1002/smll.201400483
  • [140] Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic sensor for lactate detection in human sweat. Analytical chemistry 2017; 89 (21): 11198-11202. https://doi.org/10.1021/acs.analchem.7b03662
  • [141] Ibáñez-Redín G, Cagnani GR, Gomes NO, Raymundo-Pereira PA, Machado SA et al. Wearable potentiometric biosensor for analysis of urea in sweat. Biosensors and Bioelectronics 2023; 223: 114994. https://doi.org/10.1016/j.bios.2022.114994
  • [142] Busono P, Wijaya JE, Handoyo T, Astawa IM. Wearable Fabric Based-Biosensor for Ion Detection in Sweat. In 2022 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) 2022; 223–227 IEEE. https://doi. org/10.1109/ICRAMET56917.2022.9991227
  • [143] Goud KY, Mahato K, Teymourian H, Longardner K, Litvan I et al. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sensors and Actuators B: Chemical 2022; 354: 131234. https://doi.org/10.1016/j.snb.2021.131234
  • [144] Sweilam MN, Varcoe JR, Crean C. Fabrication and optimization of fiber-based lithium sensor: a step toward wearable sensors for lithium drug monitoring in interstitial fluid. ACS sensors 2018; 3 (9): 1802-1810. https://doi.org/10.1021/acssensors.8b00528
  • [145] Lei L, Zhao C, Zhu X, Yuan S, Dong X et al. Nonenzymatic electrochemical sensor for wearable interstitial fluid glucose monitoring. Electroanalysis 2022; 34 (2): 415-422. https://doi.org/10.1002/elan.202060601
  • [146] Tehrani F, Teymourian H, Wuerstle B, Kavner J, Patel R et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering 2022; 1-11. https://doi.org/10.1038/s41551-022-00887-
APA VURAL B, Uludağ İ, ince B, OZYURT C, Öztürk F, Sezgintürk M (2023). Fluid-based wearable sensors: a turning point in personalized healthcare. , 944 - 967. 10.55730/1300-0527.3588
Chicago VURAL Berfin,Uludağ İnci,ince Bahar,OZYURT CANAN,Öztürk Funda,Sezgintürk Mustafa Kemal Fluid-based wearable sensors: a turning point in personalized healthcare. (2023): 944 - 967. 10.55730/1300-0527.3588
MLA VURAL Berfin,Uludağ İnci,ince Bahar,OZYURT CANAN,Öztürk Funda,Sezgintürk Mustafa Kemal Fluid-based wearable sensors: a turning point in personalized healthcare. , 2023, ss.944 - 967. 10.55730/1300-0527.3588
AMA VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M Fluid-based wearable sensors: a turning point in personalized healthcare. . 2023; 944 - 967. 10.55730/1300-0527.3588
Vancouver VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M Fluid-based wearable sensors: a turning point in personalized healthcare. . 2023; 944 - 967. 10.55730/1300-0527.3588
IEEE VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M "Fluid-based wearable sensors: a turning point in personalized healthcare." , ss.944 - 967, 2023. 10.55730/1300-0527.3588
ISNAD VURAL, Berfin vd. "Fluid-based wearable sensors: a turning point in personalized healthcare". (2023), 944-967. https://doi.org/10.55730/1300-0527.3588
APA VURAL B, Uludağ İ, ince B, OZYURT C, Öztürk F, Sezgintürk M (2023). Fluid-based wearable sensors: a turning point in personalized healthcare. Turkish Journal of Chemistry, 47(5), 944 - 967. 10.55730/1300-0527.3588
Chicago VURAL Berfin,Uludağ İnci,ince Bahar,OZYURT CANAN,Öztürk Funda,Sezgintürk Mustafa Kemal Fluid-based wearable sensors: a turning point in personalized healthcare. Turkish Journal of Chemistry 47, no.5 (2023): 944 - 967. 10.55730/1300-0527.3588
MLA VURAL Berfin,Uludağ İnci,ince Bahar,OZYURT CANAN,Öztürk Funda,Sezgintürk Mustafa Kemal Fluid-based wearable sensors: a turning point in personalized healthcare. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.944 - 967. 10.55730/1300-0527.3588
AMA VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M Fluid-based wearable sensors: a turning point in personalized healthcare. Turkish Journal of Chemistry. 2023; 47(5): 944 - 967. 10.55730/1300-0527.3588
Vancouver VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M Fluid-based wearable sensors: a turning point in personalized healthcare. Turkish Journal of Chemistry. 2023; 47(5): 944 - 967. 10.55730/1300-0527.3588
IEEE VURAL B,Uludağ İ,ince B,OZYURT C,Öztürk F,Sezgintürk M "Fluid-based wearable sensors: a turning point in personalized healthcare." Turkish Journal of Chemistry, 47, ss.944 - 967, 2023. 10.55730/1300-0527.3588
ISNAD VURAL, Berfin vd. "Fluid-based wearable sensors: a turning point in personalized healthcare". Turkish Journal of Chemistry 47/5 (2023), 944-967. https://doi.org/10.55730/1300-0527.3588