Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 1125 - 1137 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3599 İndeks Tarihi: 21-11-2023

Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification

Öz:
Dye-ligand affinity chromatography is among the increasingly popular affinity chromatography based on molecular recognition for the purification of albumin. This study focuses on the binding of Cibacron Blue F3GA ligand dye with magnetic silica particles and purification by separation. Mono-disperse silica particles with bimodal pore size distribution were employed as a high- performance adsorbent for human serum albumin (HSA) protein purification under equilibrium conditions. The synthesized ligand- dye affinity based magnetic silica particles were characterized by electron spin resonance, Fourier-transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, elemental analysis, and dispersive X-ray analysis. The HSA purification performance of the proposed material in the presence of a magnetic field was relatively investigated using magnetic-based particles with similar morphologies. The maximum adsorption capacity for HSA in an artificial plasma medium was defined as 48.6 mg/g magnetic silica particle. By using the designed magnetic silica particles, 1.0 M NaCl solution was successfully utilized for obtaining quantitative desorption with HSA. However, continued HSA purification performances of magnetic-based particles were significantly lower concerning the ligand-dye magnetic silica particles. The purity of the removed albumin was about 97%. The magnetic silica particles could be utilized many times without decreasing their protein adsorption capacities remarkably.
Anahtar Kelime: Albumin purification Cibacron blue F3GA ligand dye magnetic silica particles protein purification

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Wu Y, Cai Z, Wu S, Xiong W, Ma S. Protein purification by chemo-selective precipitation using thermoresponsive polymers. Biopolymers 2018; 109: 23222. https://doi.org/10.1002/bip.23222
  • [2] Pietrowska M, Wlosowicz A, Gawin M, Widlak P. MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal. In: Advances in Experimental Medicine and Biology 2019; 1073: 57-76. https://doi.org/10.1007/978-3-030-12298-0_3
  • [3] dos Santos R, Figueiredo C, Viecinski AC, Pina AS, Barbosa AJM et al. Designed affinity ligands to capture human serum albumin. Journal Chromatograpy A 2019; 1583: 88-97. https://doi.org/10.1016/j.chroma.2018.11.021
  • [4] Peters T. All About Albumin: Biochemistry, Genetic, and Medical Applications. Academic Press; 1995.
  • [5] Zhu W, Gong G, Pan J, Han S, Zhang W et al. High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expression and Purification 2018; 147: 61-68. https://doi.org/10.1016/j.pep.2018.02.003
  • [6] Minghetti PP, Ruffner DE, Kuang WJ, Dennison OE, Hawkins JW et al. Molecular structure of the human albumin gene is revealed by nucleotide sequence within q11-22 of chromosome 4. Journal of Biological Chemistry. 1986; 261 (15): 6747-6757. https://doi.org/10.1016/ s0021-9258(19)62680-3
  • [7] Esentürk MK, Akgönüllü S, Yılmaz F, Denizli A. Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection. Journal of Biomaterial Science Polymer Edition 2019; 30 (8): 646-661. https://doi.org/10.1080/09205063.2019.1600181
  • [8] Akbarzadehlaleh P, Mirzaei M, Mashahdi-Keshtiban M, Shamsasenjan K, Heydari H. PEGylated human serum albumin: Review of pegylation, purification and characterization methods. Advanced Pharmaceutical Bulletin 2016; 6 (3): 309-317. https://doi.org/10.15171/ apb.2016.043
  • [9] Raoufinia R, Balkani S, Keyhanvar N, Mahdavipor B. Human albumin purification: a modified and concise method. Journal of Immunoassay and Immunochemistry 2018; 39 (6): 687-695. https://doi.org/10.1080/15321819.2018.1531884
  • [10] Kılıç S, Andaç M, Denizli A. Binding modes of cibacron blue with albumin in affinity chromatography using docking tools. International Journal of Biological Macromolecules 2021; 183: 110-118. https://doi.org/10.1016/j.ijbiomac.2021.04.142
  • [11] Cao H, Liu X, Ulrih NP, Sengupta PK, Xiao J. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chemistry 2019; 270: 257-263. https://doi.org/10.1016/j.foodchem.2018.07.111
  • [12] Tao P, Li Z, Matsuda R, Hage DS. Chromatographic studies of chlorpropamide interactions with normal and glycated human serum albumin based on affinity microcolumns. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2018; 1097-1098: 64-73. https://doi.org/10.1016/j.jchromb.2018.09.001
  • [13] Zhang Q, Yu H, Zhang FZ, Shen ZC. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 2013; 14 (10): 867-874. https://doi. org/10.1631/jzus.B1300090
  • [14] Göktürk I, Tamahkar E, Yılmaz F, Denizli A. Protein depletion with bacterial cellulose nanofibers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2018; 1099: 1-9. https://doi.org/10.1016/j.jchromb.2018.08.030
  • [15] An Y, Li Q, Chen J, Gao X, Chen H et al. Binding of caffeic acid to human serum albumin by the retention data and frontal analysis. Biomedical Chromatography 2014; 28 (12): 1881-1886. https://doi.org/10.1002/bmc.3238
  • [16] Zhao L, Chen D. Characterization of interactions between methoxatin disodium salt and human serum albumin by pressure-assisted capillary electrophoresis/frontal analysis and circular dichroism spectroscopy. Biomedical Chromatography 2015; 29 (1): 123-128. https:// doi.org/10.1002/bmc.3248
  • [17] Zhao S, Wang D, Zhu S, Liu X, Zhang H. 3D cryogel composites as adsorbent for isolation of protein and small molecules. Talanta 2019; 191: 229-234. https://doi.org/10.1016/j.talanta.2018.08.068
  • [18] Li S, Li L, Chen Z, Xue G, Jiang L et al. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification 2018; 149: 37-42. https://doi.org/10.1016/j.pep.2018.04.012
  • [19] Tanaka K, Shigueoka EM, Sawatani E, Dias GA, Arashiro F et al. Purification of human albumin by the combination of the method of Cohn with liquid chromatography. Brazilian Journal of Medical and Biological Research 1998; 31 (11): 1383-1388. https://doi.org/10.1590/ S0100-879X1998001100003
  • [20] Tuzmen N, Kalburcu T, Uygun DA, Akgol S, Denizli A. A Novel Affinity Disks for Bovine Serum Albumin Purification. Applied Biochemistry and Biotechnology 2015; 175 (1): 454-468. https://doi.org/10.1007/s12010-014-1273-8
  • [21] Vaezzadeh AR, Briscoe AC, Steen H, Lee RS. One-step sample concentration, purification, and albumin depletion method for urinary proteomics. Journal of Proteome Research 2010; 9 (11): 6082-6089. https://doi.org/10.1021/pr100924s
  • [22] Balkani S, Shamekhi S, Raoufinia R, Parvan R, Abdolalizadeh J. Purification and characterization of bovine serum albumin using chromatographic method. Advanced Pharmaceutical Bulletin 2016; 6 (4): 651-654. https://doi.org/10.15171/apb.2016.080
  • [23] Raoufinia R, Mota A, Keyhanvar N, Safari F, Shamekhi S et al. Overview of albumin and its purification methods. Advanced Pharmaceutical Bulletin 2016; 6 (4): 495-507. https://doi.org/10.15171/apb.2016.063
  • [24] Colilla M, González B, Vallet-Regí M. Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomaterials Science 2013; 1 (2): 114-134. https://doi.org/10.1039/C2BM00085G
  • [25] Tavakoli Z, Rasekh B, Yazdian F, Maghsoudi A, Soleimani M et al. One-step separation of the recombinant protein by using the amine-functionalized magnetic mesoporous silica nanoparticles; an efficient and facile approach. International Journal of Biological Macromolecules 2019; 135: 600-608. https://doi.org/10.1016/j.ijbiomac.2019.05.114
  • [26] Ma Z, Guan Y, Liu H. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. Journal of Magnetism and Magnetic Materials 2006; 301 (2): 469-477. https://doi.org/10.1016/j.jmmm.2005.07.027
  • [27] Xu H, Yan F, Monson EE, Kopelman R. Room-temperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications. Journal of Biomedical Materials Research Part A 2003; 66 (4): 870-879. https://doi.org/10.1002/ jbm.a.10057
  • [28] Günal G, Kip Ç, Eda Öğüt S, İlhan H, Kibar G et al. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation. Artificial Cells, Nanomedicine, and Biotechnology 2018; 46 (1): 178-184. https://doi.org/10.1080/21691401.2017.1304404
  • [29] Gökçal B, Kip Ç, Şahinbaş D, Çelik E, Tuncel A. Silica microspheres functionalized with the iminodiacetic acid/copper(II) complex as a peroxidase mimic for use in metal affinity chromatography-based colorimetric determination of histidine-tagged proteins. Microchimica Acta 2020; 187 (2): 121. https://doi.org/10.1007/s00604-019-4087-0
  • [30] Öğüt E, Kip Ç, Gökçal B, Tuncel A. Aggregation-resistant nanozyme containing accessible magnetite nanoparticles immobilized in monodisperse-porous silica microspheres for colorimetric assay of human genomic DNA. Journal of Colloid and Interface Science 2019; 550: 90-98. https://doi.org/10.1016/j.jcis.2019.04.089
  • [31] Sari M, Akgöl S, Karataş M, Denizli A. Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads. Industrial & Engineering Chemistry Research 2006; 45 (9): 3036-3043. https://doi.org/10.1021/ie0507979
  • [32] Liu J, Liang Y, Shen J, Bai Q. Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood. Analytical and Bioanalytical Chemistry 2018; 410: 573-584. https://doi.org/10.1007/s00216- 017-0758-z
  • [33] Bhakta S, Dixit CK, Bist I, Macharia J, Shen M et al. Albumin removal from human serum using surface nanopockets on silica-coated magnetic nanoparticles. Chemical Communications 2017; 53: 9254-9257. https://doi.org/10.1039/c7cc03412a
  • [34] Odabaşı M. Magnetic dye-affinity beads for human serum albumin purification. Preparative Biochemistry & Biotechnology 2011; 41 (3): 1532-2297. https://doi.org/10.1080/10826068.2010.540606
  • [35] Wang T, Lyu Y, Yang Z, Cheng H, Zhang Q et al. Fabrication of Metal Ion–BSA Chelation-Targeted Surface-Imprinted Particles for Protein Separation. Industrial & Engineering Chemistry Research 2023; 62 (23): 9290-9301. https://doi.org/10.1021/acs.iecr.3c00582
APA Tatar N, Akgönüllü S, Yavuz Alagöz H, Denizli A (2023). Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. , 1125 - 1137. 10.55730/1300-0527.3599
Chicago Tatar Nurhak,Akgönüllü Semra,Yavuz Alagöz Handan,Denizli Adil Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. (2023): 1125 - 1137. 10.55730/1300-0527.3599
MLA Tatar Nurhak,Akgönüllü Semra,Yavuz Alagöz Handan,Denizli Adil Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. , 2023, ss.1125 - 1137. 10.55730/1300-0527.3599
AMA Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. . 2023; 1125 - 1137. 10.55730/1300-0527.3599
Vancouver Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. . 2023; 1125 - 1137. 10.55730/1300-0527.3599
IEEE Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A "Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification." , ss.1125 - 1137, 2023. 10.55730/1300-0527.3599
ISNAD Tatar, Nurhak vd. "Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification". (2023), 1125-1137. https://doi.org/10.55730/1300-0527.3599
APA Tatar N, Akgönüllü S, Yavuz Alagöz H, Denizli A (2023). Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turkish Journal of Chemistry, 47(5), 1125 - 1137. 10.55730/1300-0527.3599
Chicago Tatar Nurhak,Akgönüllü Semra,Yavuz Alagöz Handan,Denizli Adil Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turkish Journal of Chemistry 47, no.5 (2023): 1125 - 1137. 10.55730/1300-0527.3599
MLA Tatar Nurhak,Akgönüllü Semra,Yavuz Alagöz Handan,Denizli Adil Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.1125 - 1137. 10.55730/1300-0527.3599
AMA Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turkish Journal of Chemistry. 2023; 47(5): 1125 - 1137. 10.55730/1300-0527.3599
Vancouver Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turkish Journal of Chemistry. 2023; 47(5): 1125 - 1137. 10.55730/1300-0527.3599
IEEE Tatar N,Akgönüllü S,Yavuz Alagöz H,Denizli A "Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification." Turkish Journal of Chemistry, 47, ss.1125 - 1137, 2023. 10.55730/1300-0527.3599
ISNAD Tatar, Nurhak vd. "Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification". Turkish Journal of Chemistry 47/5 (2023), 1125-1137. https://doi.org/10.55730/1300-0527.3599