Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 1209 - 1223 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3606 İndeks Tarihi: 21-11-2023

Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation

Öz:
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type $[(η^6-p-cymene)(BNHC)RuCl_2]$ (1a–g) were synthesized via one-pot reaction of the NHC salt precursor, $$Ag_2O, and [RuCl_2(p-cymene)]_2$ and characterized using con- ventional spectroscopic techniques. The geometry of two precursors, $[( η^6-p-cymene)(^{Me4Bn}Me2BNHC^{CH2OxMe})RuCl2]$ ( 1f) and $[( η^6-p- cymene)(^{Me5Bn}Me_2BNHC^{CH2OxMe})RuCl_2]$ (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
Anahtar Kelime: Benzimidazol-2-ylidenes ruthenium complexes amine alkylation C–N bond formation mild conditions

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Brown BR. The Organic Chemistry of Aliphatic Nitrogen Compounds. Oxford, UK: Oxford University Press, 1994.
  • [2] Hu S, Tat D, Martinez CA, Yazbeck DR, Tao J. An efficient and practical chemoenzymatic preparation of optically active secondary amines. Organic Letters 2005; 7: 4329-4331. https://doi.org/10.1021/ol051392n
  • [3] Zhu A, Zhan W, Liang Z, Yoon Y, Yang H et al. Dipyrimidine amines: a novel class of chemokine receptor type 4 antagonists with high specificity. Journal of Medicinal Chemistry 2010; 53 (24): 8556-8568. https://doi.org/10.1021/jm100786g
  • [4] Chen J, Zhou H, Aguilar A, Liu L, Bai L et al. Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. Journal of Medicinal Chemistry 2012; 55 (19): 8502-8514. https://doi.org/10.1021/ jm3010306
  • [5] Salvatore RN, Yoon CH, Jung KW. Synthesis of secondary amines. Tetrahedron 2001; 57 (37): 7785-7812. https://doi.org/10.1016/S0040- 4020(01)00722-0
  • [6] Boros EE, Thompson JB, Katamreddy SR, Carpenter AJ. Facile reductive amination of aldehydes with electron-deficient anilines by acyloxyborohydrides in TFA: application to a diazaindoline scale-up. The Journal of Organic Chemistry 2009; 74 (9): 3587-3590. https://doi. org/10.1021/jo900157z
  • [7] Alonso F, Riente P, Yus M. Nickel nanoparticles in hydrogen transfer reactions. Accounts of Chemical Research 2011; 44 (5): 379-391. https:// doi.org/10.1021/ar1001582
  • [8] Yang BH, Buchwald SL. Palladium-catalyzed amination of aryl halides and sulfonates. Journal of Organometallic Chemistry 1999; 576 (1-2): 125-146. https://doi.org/10.1016/S0022-328X(98)01054-7
  • [9] Beller M, Seayad J, Tillack A, Jiao H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angewandte Chemie International Edition 2004; 43 (26): 3368-3398. https://doi.org/10.1002/anie.200300616
  • [10] Hannedouche J, Schulz E. Asymmetric hydroamination: a survey of the most recent developments. Chemistry A European Journal 2013; 19 (16): 4972-4985. https://doi.org/10.1002/chem.201203956
  • [11] Ahmed M, Seayad AM, Jackstell R, Beller M. Amines made easily: a highly selective hydroaminomethylation of olefins. Journal of the American Chemical Society 2003; 125 (34): 10311-10318. https://doi.org/10.1021/ja030143w
  • [12] Guillena G, Ramon DJ, Yus M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chemical Reviews 2010; 110 (3): 1611-1641. https://doi.org/10.1021/cr9002159
  • [13] Watson AJ, Williams JM. The give and take of alcohol activation. Science 2010; 329 (5992): 635-636. https://doi.org/10.1126/science.1191843
  • [14] Nandakumar A, Midya SP, Landge VG, Balaraman E. Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds. Angewandte Chemie International Edition 2015; 54 (3): 11022-11034. https://doi.org/10.1002/anie.201503247
  • [15] Ma X, Su C, Xu Q. N-Alkylation by hydrogen autotransfer reactions. In: Guillena G, Ramón D (editors). Hydrogen Transfer Reactions. Topics in Current Chemistry Collections. Springer Cham. 2016, pp. 291-364.
  • [16] Grigg R, Mitchell T, Sutthivaiyakit S, Tongpenyai N. Transition metal-catalysed N-alkylation of amines by alcohols. Journal of the Chemical Society, Chemical Communications 1981; 611-612. https://doi.org/10.1039/C39810000611
  • [17] Watanabe Y, Tsuji Y, Ohsugi Y. The ruthenium catalyzed N-alkylation and N-heterocyclization of aniline using alcohols and aldehydes. Tetrahedron Letters 1981; 22 (28): 2667-2670. https://doi.org/10.1016/S0040-4039(01)92965-X
  • [18] Huang M, Li Y, Lan XB, Liu J, Zhao C et al. Ruthenium (II) complexes with N-heterocyclic carbene–phosphine ligands for the N-alkylation of amines with alcohols. Organic & Biomolecular Chemistry 2021; 19: 3451-3461. https://doi.org/10.1039/D1OB00362C
  • [19] Das K, Nandi PG, Islam K, Srivastava HK, Kumar A. N–alkylation of amines catalyzed by a ruthenium–pincer complex in the presence of in situ generated sodium alkoxide. European Journal of Organic Chemistry 2019; 2019 (40) 6855-6866. https://doi.org/10.1002/ejoc.201901310
  • [20] Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR et al. A base and solvent-free ruthenium-catalyzed alkylation of amines. ACS Catalysis 2017; 7 (2): 1136-1142. https://doi.org/10.1021/acscatal.6b03088
  • [21] Imm S, Baehn S, Neubert L, Neumann H, Beller M. An efficient and general synthesis of primary amines by ruthenium-catalyzed amination of secondary alcohols with ammonia. Angewandte Chemie International Edition 2010; 49 (44): 8126-8129. https://doi.org/10.1002/ anie.201002576
  • [22] Mamidala R, Mukundam V, Dhanunjayarao K, Venkatasubbaiah K. Cyclometalated palladium pre-catalyst for N-alkylation of amines using alcohols and regioselective alkylation of sulfanilamide using aryl alcohols. Tetrahedron 2017; 73 (16): 2225-223 https://doi.org/10.1016/j. tet.2017.03.001
  • [23] Dang TT, Ramalingam B, Shan SP, Seayad AM. An efficient palladium-catalyzed N-alkylation of amines using primary and secondary alcohols. ACS Catalysis 2013; 3 (11) 2536-2540. https://doi.org/10.1021/cs400799n References
  • [24] Martinez-Asencio A, Yus M, Ramon DJ. Palladium (II) acetate as catalyst for the N-alkylation of aromatic amines, sulfonamides, and related nitrogenated compounds with alcohols by a hydrogen autotransfer process. Synthesis 2011; (22) 3730-3740. https://doi. org/10.1055/s-0030-1260238
  • [25] Guérin V, Legault CY. Synthesis of NHC-iridium (III) complexes based on N-iminoimidazolium ylides and their use for the amine alkylation by borrowing hydrogen catalysis. Organometallics 2021; 40 (3): 408-417. https://doi.org/10.1021/acs.organomet.0c00726
  • [26] Luo N, Zhong Y, Wen H, Luo R. Cyclometalated iridium complex-catalyzed N-alkylation of amines with alcohols via borrowing hydrogen in aqueous media. ACS Omega 2020; 5 (42): 27723-27732. https://doi.org/10.1021/acsomega.0c04192
  • [27] Fujita KI, Furukawa S, Morishima N, Shimizu M, Yamaguchi R. N-alkylation of aqueous ammonia with alcohols leading to primary amines catalyzed by water-soluble N-heterocyclic carbene complexes of iridium. ChemCatChem 2018; 10 (9): 1993-1997. https://doi. org/10.1002/cctc.201702037
  • [28] Tsuji Y, Takeuchi R, Ogawa H, Watanabe Y. Platinum complex catalyzed transformation of amine. N-alkylation and N-allylation using primary alcohols. Chemistry Letters 1986; 15 (3); 293-294. https://doi.org/10.1246/cl.1986.293
  • [29] Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. Manganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation. ACS Catalysis 2018; 8 (9); 8525-8530. https://doi.org/10.1021/acscatal.8b02530
  • [30] Reed-Berendt BG, Polidano K, Morrill LC. Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Organic & Biomolecular Chemistry 2019; 17: 1595-1607. https://doi.org/10.1039/C8OB01895B
  • [31] Balamurugan G, Ramesh R, Malecki JG. Nickel (II)–N˄N˄O pincer type complex-catalyzed N-alkylation of amines with alcohols via the hydrogen autotransfer reaction. The Journal of Organic Chemistry 2020: 85 (11) 7125-7135. https://doi.org/10.1021/acs.joc.0c00530
  • [32] Polidano K, Allen BD, Williams JM, Morrill LC. Iron-catalyzed methylation using the borrowing hydrogen approach. ACS Catalysis 2018; 8 (7): 6440-6445. https://doi.org/10.1021/acscatal.8b02158
  • [33] Llabres-Campaner PJ, Ballesteros-Garrido R, Ballesteros R, Abarca B. β-Amino alcohols from anilines and ethylene glycol through heterogeneous Borrowing Hydrogen reaction. Tetrahedron 2017; 73 (37): 5552-5561. https://doi.org/10.1016/j.tet.2017.08.006
  • [34] Montgomery SL, Mangas-Sanchez J, Thompson MP, Aleku GA, Dominguez B et al. Direct alkylation of amines with primary and secondary alcohols through biocatalytic hydrogen borrowing. Angewandte Chemie International Edition 2017; 129 (35): 10627-10630. https://doi.org/10.1002/ange.201705848
  • [35] Thompson MP, Turner NJ. Two-enzyme hydrogen-borrowing amination of alcohols enabled by a cofactor-switched alcohol dehydrogenase. ChemCatChem 2017; 9 (20): 3833-3836. https://doi.org/10.1002/cctc.201701092
  • [36] Eka Putra A, Oe Y, Ohta T. Ruthenium-catalyzed enantioselective synthesis of β-amino alcohols from 1, 2-diols by “Borrowing Hydrogen.” European Journal of Organic Chemistry 2013; 2013 (27): 6146-6151. https://doi.org/10.1002/ejoc.201300692
  • [37] Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. Selective amine cross-coupling using iridium-catalyzed “Borrowing Hydrogen” methodology. Angewandte Chemie International Edition 2009; 121 (40): 7511-7514. https://doi.org/10.1002/ange.200904028
  • [38] Kaloğlu M, Gürbüz N, Sémeril D, Özdemir İ. Ruthenium (II)-(p-cymene)-N-heterocyclic carbene complexes for the N-alkylation of amine using the green hydrogen borrowing methodology. European Journal of Organic Chemistry 2018; (10): 1236-1243. https://doi. org/10.1002/ejic.201701479
  • [39] Kaloğlu N, Achard M, Bruneau C, Özdemir İ. Ruthenium (II)-(arene)-N-heterocyclic carbene complexes: efficient and selective catalysts for the N-alkylation of aromatic amines with alcohols. European Journal of Organic Chemistry 2019; 2019 (21): 2598-2606. https://doi. org/10.1002/ejic.201900191
  • [40] Şahin N, Özdemir N, Gürbüz N, Özdemir İ. Novel N-alkylbenzimidazole-ruthenium (II) complexes: synthesis and catalytic activity of N-alkylating reaction under solvent-free medium. Applied Organometallic Chemistry 2019; 33 (2): e4704. https://doi.org/10.1002/ aoc.4704
  • [41] Çicek M, Gürbüz N, Özdemir N, Özdemir İ, İspir E. Half-sandwich Ru (II) arene complexes bearing benzimidazole ligands for the N-alkylation reaction of aniline with alcohols in a solvent-free medium. New Journal of Chemistry 2021; 45: 11075-11085. https://doi. org/10.1039/D1NJ01539G
  • [42] Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing hydrogen amination reactions: a complex analysis of trends and correlations of the various reaction parameters. ACS Catalysis 2022; 12 (12): 7142-7198. https://doi.org/10.1021/acscatal.2c01133
  • [43] Banerjee D, Kabadwal LM, Bera S. Recent advances in sustainable organic transformations using methanol: expanding the scope of hydrogen borrowing catalysis, Organic Chemistry Frontiers 2021; 8: 7077-7096. https://doi.org/10.1039/D1QO01412A
  • [44] Moutaoukil Z, Serrano-Díez E, Collado IG, Jimenez-Tenorio M, Botubol-Ares JM. N-Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC; half-sandwich ruthenium complexes. Organic & Biomolecular Chemistry 2022; 20: 831-839. https://doi.org/10.1039/D1OB02214H
  • [45] Arduengo III AJ, Dias HR, Harlow RL, Kline M. Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society 1992; 114 (14): 5530-5534. https://doi.org/10.1021/ja00040a007
  • [46] Sanford MS, Love JA, Grubbs RH. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 2021; 20 (25): 5314-5318. https://doi.org/10.1021/om010599r
  • [47] Herrmann WA, Köcher C. N-Heterocyclic carbenes. Angewandte Chemie International Edition 1997; 36 (20): 2162-2187. https://doi. org/10.1002/anie.199721621
  • [48] Meeniga I, Gokanapalli A, Peddiahgari VGR. Synthesis of environmentally benign new ionic liquids for the preparation of 2-aryl/ heteroaryl benzimidazoles/benzoxazoles under ultrasonication. Sustainable Chemistry and Pharmacy 2022; 30: 100874-100879. https://doi.org/10.1016/j.scp.2022.100874
  • [49] Wang WQ, Wang ZQ, Sang W, Zhang R, Cheng H et al. Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: the influence of catalyst loadings, ancillary and added ligands. Polyhedron 2021; 195: 114979-114981. https://doi.org/10.1016/j.poly.2020.114979
  • [50] Huang M, Li Y, Lan XB, Liu J, Zhao C et al. Ruthenium (II) complexes with N-heterocyclic carbene–phosphine ligands for the N-alkylation of amines with alcohols. Organic & Biomolecular Chemistry 2021; 19: 3451-3461. https://doi.org/10.1039/D1OB00362C
  • [51] Shan SP, Xiaoke X, Gnanaprakasam B, Dang TT, Ramalingam B et al. Benzimidazolin-2-ylidene N-heterocyclic carbene complexes of ruthenium as a simple catalyst for the N-alkylation of amines using alcohols and diols. RSC Advances 2015; 5: 4434-4442. https://doi. org/10.1039/C4RA15398G
  • [52] Şahin Z, Gürbüz N, Özdemir İ, Şahin O, Büyükgüngör O et al. N-Alkylation and N, C-dialkylation of amines with alcohols in the presence of ruthenium catalysts with chelating N-heterocyclic carbene ligands. Organometallics 2015; 34 (11): 2296-2304. https://doi. org/10.1021/om501066n
  • [53] Nawaz Z, Ullah H, Gürbüz N, Zafar MN, Verpoort F et al. Benzimidazole-based N-heterocyclic carbene silver complexes as catalysts for the formation of carbonates from carbon dioxide and epoxides. Molecular Catalysis 2022; 526 (60): 112369-112380. http://dx.doi. org/10.1016/j.mcat.2022.112369
  • [54] Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C et al. Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography 2015; 48: 306-309. https://doi.org/10.1107/S1600576715001132
  • [55] Sheldrick GM. A short history of SHELX. Acta Crystallographica Section A 2008; A64: 112-122. https://doi.org/10.1107/ S0108767307043930
  • [56] Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography 2009; 42: 339-341. https://doi.org/10.1107/S0021889808042726
  • [57] Nawaz Z, Gürbüz N, Zafar MN, Tahir MN, Ashfaq M et al. Direct arylation (hetero-coupling) of heteroarenes via unsymmetrical palladium-PEPPSI-NHC type complexes. Polyhedron 2021; 208: 115412-115410. https://doi.org/10.1016/j.poly.2021.115412
  • [58] Hackenberg F, Müller-Bunz H, Smith R, Streciwilk W, Zhu X et al. Novel ruthenium (II) and gold (I) NHC complexes: synthesis, characterization, and evaluation of their anticancer properties. Organometallics 2013; 32 (19): 5551-5560. https://doi.org/10.1021/ om400819p
  • [59] Tay BY, Wang C, Phua PH, Stubbs LP, Huynh HV. Selective hydrogenation of levulinic acid to γ-valerolactone using in situ generated ruthenium nanoparticles derived from Ru–NHC complexes. Dalton Transactions 2016; 45: 3558-3563. https://doi.org/10.1039/ C5DT03366G
  • [60] Lam NY, Truong D, Burmeister H, Babak MV, Holtkamp HU et al. From catalysis to cancer: toward structure–activity relationships for benzimidazol-2-ylidene-derived N-heterocyclic-carbene complexes as anticancer agents. Inorganic Chemistry 2018; 57 (22): 14427- 14434. https://doi.org/10.1021/acs.inorgchem.8b02634
  • [61] Wang WQ, Yuan Y, Miao Y, Yu BY, Wang HJ et al. Well-defined N-heterocyclic carbene/ruthenium complexes for the alcohol amidation with amines: the dual role of cesium carbonate and improved activities applying an added ligand. Applied Organometallic Chemistry 2020; 34 (2): e5323-5333. https://doi.org/10.1002/aoc.5323
  • [62] Sarı Y, Gürses C, Celepci DB, Keleştemur Ü, Aktaş A et al. 4-Vinylbenzyl and 2-morpholinoethyl substituted ruthenium (II) complexes: design, synthesis, and biological evaluation. Journal of Molecular Structure 2020; 1202: 127355-127363. https://doi.org/10.1016/j. molstruc.2019.127355
  • [63] Kathuria L, Din Reshi NU, Samuelson AG. N-Heterocyclic carbene (NHC)-stabilized Ru0 nanoparticles: in situ generation of an efficient transfer hydrogenation catalyst. Chemistry A European Journal 2020; 26 (34): 7622-7630. https://doi.org/10.1002/chem.202000142
  • [64] Dang TT, Ramalingam B, Seayad AM. Efficient ruthenium-catalyzed N-methylation of amines using methanol. ACS Catalysis 2015; 5 (7): 4082-4088. https://doi.org/10.1021/acscatal.5b00606
  • [65] Liu Z, Yang Z, Yu X, Zhang H, Yu B et al. Efficient cobalt-catalyzed methylation of amines using methanol. Advanced Synthesis & Catalysis 2017; 359 (24): 4278-4283. https://doi.org/10.1002/adsc.201701044
  • [66] Lin WH, Chang HF. A study of ethanol dehydrogenation reaction in a palladium membrane reactor. Catalysis Today 2004; 97 (2-3): 181- 188. https://doi.org/10.1016/j.cattod.2004.03.068
  • [67] Illam PM, Rit A. Electronically tuneable orthometalated RuII–NHC complexes as efficient catalysts for C–C and C–N bond formations via borrowing hydrogen strategy. Catalysis Science & Technology 2022; 12: 67-74. https://doi.org/10.1039/D1CY01767E
  • [68] Donthireddy S, Mathoor Illam P, Rit A. Ruthenium (II) complexes of heteroditopic N-heterocyclic carbene ligands: efficient catalysts for C–N bond formation via a hydrogen-borrowing strategy under solvent-free conditions. Inorganic Chemistry 2020; 59 (3): 1835-1847. https://doi.org/10.1021/acs.inorgchem.9b03049
  • [69] Biswas N, Srimani D. Ru-catalyzed selective catalytic methylation and methylenation reaction employing methanol as the C1 source. The Journal of Organic Chemistry 2021; 86 (15): 10544-10554. https://doi.org/10.1021/acs.joc.1c01185
APA Nawaz Z, Gürbüz N, Naveed M, Özdemir N, Cetinkaya B, Özdemir İ (2023). Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. , 1209 - 1223. 10.55730/1300-0527.3606
Chicago Nawaz Zahid,Gürbüz Nevin,Naveed Muhammad,Özdemir Namık,Cetinkaya Bekir,Özdemir İsmail Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. (2023): 1209 - 1223. 10.55730/1300-0527.3606
MLA Nawaz Zahid,Gürbüz Nevin,Naveed Muhammad,Özdemir Namık,Cetinkaya Bekir,Özdemir İsmail Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. , 2023, ss.1209 - 1223. 10.55730/1300-0527.3606
AMA Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. . 2023; 1209 - 1223. 10.55730/1300-0527.3606
Vancouver Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. . 2023; 1209 - 1223. 10.55730/1300-0527.3606
IEEE Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ "Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation." , ss.1209 - 1223, 2023. 10.55730/1300-0527.3606
ISNAD Nawaz, Zahid vd. "Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation". (2023), 1209-1223. https://doi.org/10.55730/1300-0527.3606
APA Nawaz Z, Gürbüz N, Naveed M, Özdemir N, Cetinkaya B, Özdemir İ (2023). Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. Turkish Journal of Chemistry, 47(5), 1209 - 1223. 10.55730/1300-0527.3606
Chicago Nawaz Zahid,Gürbüz Nevin,Naveed Muhammad,Özdemir Namık,Cetinkaya Bekir,Özdemir İsmail Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. Turkish Journal of Chemistry 47, no.5 (2023): 1209 - 1223. 10.55730/1300-0527.3606
MLA Nawaz Zahid,Gürbüz Nevin,Naveed Muhammad,Özdemir Namık,Cetinkaya Bekir,Özdemir İsmail Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.1209 - 1223. 10.55730/1300-0527.3606
AMA Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. Turkish Journal of Chemistry. 2023; 47(5): 1209 - 1223. 10.55730/1300-0527.3606
Vancouver Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation. Turkish Journal of Chemistry. 2023; 47(5): 1209 - 1223. 10.55730/1300-0527.3606
IEEE Nawaz Z,Gürbüz N,Naveed M,Özdemir N,Cetinkaya B,Özdemir İ "Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation." Turkish Journal of Chemistry, 47, ss.1209 - 1223, 2023. 10.55730/1300-0527.3606
ISNAD Nawaz, Zahid vd. "Benzimidazol-2-ylidene ruthenium complexes for C–N bond formation through alcohol dehydrogenation". Turkish Journal of Chemistry 47/5 (2023), 1209-1223. https://doi.org/10.55730/1300-0527.3606