Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 1271 - 1284 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3611 İndeks Tarihi: 21-11-2023

Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability

Öz:
Subtle engineering for the generation of a biosensor from a conjugated polymer with the inclusion of fluorine-substituted benzothiadiazole and indole moieties is reported. The engineering includes the electrochemical copolymerization of the indole- 6-carboxylic acid ( M1) and 5-fluoro-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole ( M2) on the indium tin oxide and graphite electrode surfaces for the investigation of both their electrochemical properties and biosensing abilities with their copolymer counterparts. The intermediates and final conjugated polymers, Poly(M1) [P-In6C], Poly(M2) [P-FBTz], and copoly(M1 and M2) [P-In6CFBTz], were entirely characterized $by ^{1}H NMR, ^{13}C NMR, CV, UV-Vis-NIR$ spectrophotometry, and SEM techniques. HOMO energy levels of electrochemically obtained polymers were calculated from the oxidation onsets in anodic scans as –4.78 eV, –5.23 eV, and –4.89 eV, and optical bandgap $(Eg^{op})$ values were calculated from the onset of the lowest-energy π–π* transitions as 2.26 eV, 1.43 eV, and 1.59 eV for P-In6C, P-FBTz, and P-In6CFBTz, respectively. By incorporation of fluorine-substituted benzothiadiazole (M2) into the polymer backbone by electrochemical copolymerization, the poor electrochemical properties of P-In6C were remarkably improved. The polymer P-In6CFBTz demonstrated striking electrochemical properties such as a lower optical band gap, red-shifted absorption, multielectrochromic behavior, a lower switching time, and higher optical contrast. Overall, the newly developed copolymer, which combined the features of each monomer, showed superior electrochemical properties and was tested as a glucose-sensing framework, offering a low detection limit (0.011 mM) and a wide linear range (0.05–0.75 mM) with high sensitivity $(44.056 μA mM^{–1} cm^{–2})$.
Anahtar Kelime: Fluorine-substituted benzothiadiazole and indole moieties conjugated polymers copolymerization uses in optoelectronics and biosensing glucose biosensor

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Tomczykowa M, Plonska-Brzezinska ME. Conducting polymers, hydrogels and their composites: preparation, properties and bioapplications. Polymers (Basel) 2019; 11: 1-36. https://doi.org/10.3390/polym11020350
  • [2] Karakurt O, Alemdar E, Erer MC, Cevher D, Gulmez S et al. Boosting the efficiency of organic solar cells via plasmonic gold nanoparticles and thiol functionalized conjugated polymer. Dyes and Pigments 2022; 208: 110818. https://doi.org/10.1016/j.dyepig.2022.110818
  • [3] Kang S, Kwon H, Jeong J, Kim YC, Park J. Synthesis and electroluminescence properties of new blue emitting polymer based on dual-core type for solution process OLEDs. Macromolecular Research 2022; 30: 454-459. https://doi.org/10.1007/s13233-022-0053-5
  • [4] Kalçık A, Kıvrak A, Bezgi̇n Çarbaş B. Synthesis and characterization of an electrochromic copolymer based on 9, 10-di (furan-2-yl) anthracene and 3,4-ethylenedioxythiophene. Turkish Journal of Chemistry 2022; 46: 1109-1119. https://doi.org/10.55730/1300-0527.3419
  • [5] Uke SJ, Mardikar SP, Kumar A, Kumar Y, Gupta M et al. A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors. Royal Society Open Science 2021; 8: 210567. https://doi.org/10.1098/rsos.210567
  • [6] Dzudzevic Cancar H, Soylemez S, Akpinar Y, Kesik M, Göker S et al. A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Applied Materials & Interfaces 2016; 8: 8058-8067. https://doi.org/10.1021/acsami.5b12383
  • [7] Scholes DT, Yee PY, McKeown GR, Li S, Kang H et al. Designing conjugated polymers for molecular doping: the roles of crystallinity, swelling, and conductivity in sequentially-doped selenophene-based copolymers. Chemistry of Materials 2019; 31: 73-82. https://doi. org/10.1021/acs.chemmater.8b02648
  • [8] Savagatrup S, Makaram AS, Burke DJ, Lipomi DJ. Mechanical properties of conjugated polymers and polymer-fullerene composites as a function of molecular structure. Advanced Functional Materials 2014; 24: 1169-1181. https://doi.org/10.1002/adfm.201302646
  • [9] Bulut U, Sanli S, Cevher SC, Cirpan A, Donmez S et al. A biosensor platform based on amine functionalized conjugated benzenediamine- benzodithiophene polymer for testosterone analysis. Journal of Applied Polymer Science 2020; 137: 49332. https://doi.org/10.1002/app.49332
  • [10] Le TH, Kim Y, Yoon H. Electrical and electrochemical properties of conducting polymers. Polymers (Basel) 2017; 9: 150. https://doi. org/10.3390/polym9040150
  • [11] Wang J. Electroanalysis and biosensors. Analytical Chemistry 1999; 71: 487-492. https://doi.org/10.1021/a1999905e
  • [12] Ramanaviciene A, Plikusiene I. Polymers in sensor and biosensor design. Polymers (Basel) 2021; 13: 20-22. https://doi.org/10.3390/ polym13060917
  • [13] Şahin Sadık E, Saraoğlu HM, Gürol İ, Ebeoğlu MA, Koçak FE. Determination of blood glucose parameter from human blood serum by using a quartz crystal microbalance sensor coated with phthalocyanines compounds. Turkish Journal of Chemistry 2020; 44: 1293-1302. https://doi.org/10.3906/KIM-1911-69
  • [14] Chen C, Xie Q, Yang D, Xiao H, Fu Y et al. Recent advances in electrochemical glucose biosensors: a review. RSC Advances 2013; 3: 4473- 4491. https://doi.org/10.1039/C2RA22351A
  • [15] Soylemez S, Kanik FE, Nurioglu AG, Akpinar H, Toppare L. A novel conducting copolymer: investigation of its matrix properties for cholesterol biosensor applications. Sensors and Actuators B: Chemical 2013; 182: 322-329. https://doi.org/10.1016/J.SNB.2013.03.009
  • [16] Xue Y, Sheng Z, Zhao H, Wu Z, Li X et al. Electrochemical synthesis and characterization of a novel thiazole-based copolymer and its application in biosensor. Electrochimica Acta 2012; 59: 256-263. https://doi.org/10.1016/J.ELECTACTA.2011.10.061
  • [17] Fan Q, Méndez-Romero UA, Guo X, Wang E, Zhang M et al. Fluorinated photovoltaic materials for high-performance organic solar cells. Chemistry – An Asian Journal 2019; 14: 3085-3095. https://doi.org/10.1002/asia.201900795
  • [18] Leclerc N, Chávez P, Ibraikulov OA, Heiser T, Lévêque P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: a review. Polymers (Basel) 2016; 8: 11. https://doi.org/10.3390/polym8010011
  • [19] Aslan ST, Cevher D, Bolayır E, Hizalan Ozsoy G, Arslan Udum Y et al. Synthesis of selenophene substituted benzodithiophene and fluorinated benzothiadiazole based conjugated polymers for organic solar cell applications. Electrochimica Acta 2021; 398: 139298. https://doi.org/10.1016/j.electacta.2021.139298
  • [20] Soylemez S, Ekiz Kanik F, Ileri M, Hacioglu SO, Toppare L. Development of a novel biosensor based on a conducting polymer. Talanta 2014; 118: 84-89. https://doi.org/10.1016/J.TALANTA.2013.10.007
  • [21] Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C et al. Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006; 18: 789-794. https://doi.org/10.1002/adma.200501717
  • [22 Dang D, Xiao M, Zhou P, Shi J, Tao Q et al. Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D-A-type two-dimensional copolymers. Organic Electronics 2014; 15: 2876-2884. https://doi.org/10.1016/j. orgel.2014.08.022
  • [23] Nie G, Zhou L, Guo Q, Zhang S. A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices. Electrochemistry Communications 2010; 12: 160-163. https://doi.org/10.1016/j.elecom.2009.11.013
  • [24] Yang J, Yin X, Zhang W. Electrochemical determination of PIK3CA gene associated with breast cancer based on molybdenum disulfide nanosheet-supported poly(indole-6-carboxylic acid). Analytical Methods 2019; 11: 157-162. https://doi.org/10.1039/c8ay02425a
  • [25] Xiao L, Liu B, Chen X, Li Y, Tang W et al. Fluorine substituted benzothiazole-based low bandgap polymers for photovoltaic applications. RSC Advances 2013; 3: 11869-11876. https://doi.org/10.1039/c3ra41140k
  • [26] Jeong I, Chae S, Yi A, Kim J, Chun HH et al. Syntheses and photovoltaic properties of 6-(2-thienyl)-4H-thieno[3,2-b]indole based conjugated polymers containing fluorinated benzothiadiazole. Polymer 2017; 109: 115-125. https://doi.org/10.1016/j.polymer.2016.12.040
  • [27] Chimirri A, De Sarro A, De Sarro G, Gitto R, Zappalà M. Synthesis and anticonvulsant properties of 2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a] benzimidazol-1-one derivatives. Il Farmaco 2001; 56: 821-826. https://doi.org/10.1016/S0014-827X(01)01147-8
  • [28] Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. New York, NY, USA: John Wiley, 2000.
  • [29] Guler M, Turkoglu V, Kivrak A. A novel glucose oxidase biosensor based on poly([2,2′;5′,2′′]-terthiophene-3′-carbaldehyde) modified electrode. International Journal of Biological Macromolecules 2015; 79: 262-268. https://doi.org/10.1016/J.IJBIOMAC.2015.04.042
  • [30] Jędrzak A, Rębiś T, Klapiszewski Ł, Zdarta J, Milczarek G et al. Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sensors and Actuators B: Chemical 2018; 256: 176-185. https://doi.org/10.1016/J. SNB.2017.10.079
  • [31] Lineweaver H, Burk D. The determination of enzyme dissociation constants. Journal of the American Chemical Society 1934; 56: 658-666. https://doi.org/10.1021/JA01318A036/ASSET/JA01318A036.FP.PNG_V03
  • [32] Holland JT, Lau C, Brozik S, Atanassov P, Banta S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. Journal of the American Chemical Society 2011; 133: 19262-19265. https://doi.org/10.1021/JA2071237/ SUPPL_FILE/JA2071237_SI_001.PDF
  • [33] Chen J, Zheng X, Li Y, Zheng H, Liu Y et al. A glucose biosensor based on direct electron transfer of glucose oxidase on PEDOT modified microelectrode. Journal of the Electrochemical Society 2020; 167: 067502. https://doi.org/10.1149/1945-7111/AB7E26
  • [34] Settu K, Chiu PT, Huang YM. Laser-induced graphene-based enzymatic biosensor for glucose detection. Polymers 2021; 13: 2795. https:// doi.org/10.3390/POLYM13162795.
  • [35] Fatoni A, Wijonarko A, Anggraeni MD, Hermawan D, Diastuti H et al. Alginate NiFe2O4 nanoparticles cryogel for electrochemical glucose biosensor development. Gels 2021; 7: 272. https://doi.org/10.3390/GELS7040272
  • [36] Chavez-Urbiola IR, Reséndiz-Jaramillo AY, Willars-Rodriguez FJ, Martinez-Saucedo G, Arriaga LG et al. Glucose biosensor based on a flexible Au/ZnO film to enhance the glucose oxidase catalytic response. Journal of Electroanalytical Chemistry 2022; 926: 116941. https:// doi.org/10.1016/J.JELECHEM.2022.116941
  • [37] Quintero-Jaime AF, Quílez-Bermejo J, Cazorla-Amorós D, Morallón E. Metal free electrochemical glucose biosensor based on N-doped porous carbon material. Electrochimica Acta 2021; 367: 137434. https://doi.org/10.1016/J.ELECTACTA.2020.137434
  • [38] Wang Y, Yin L, Wu J, Li N, He N et al. Perovskite-SrTiO3/TiO2/PDA as photoelectrochemical glucose biosensor. Ceramics International 2021; 47: 29807-29814. https://doi.org/10.1016/J.CERAMINT.2021.07.152
  • [39] Kim DS, Yang X, Lee JH, Yoo HY, Park C et al. Development of GO/Co/chitosan-based nano-biosensor for real-time detection of D-glucose. Biosensors 2022; 12: 464. https://doi.org/10.3390/BIOS12070464
APA OSMANOĞULLARI S, Söylemez S, KARAKURT O, Ozdemir Hacioglu S, Çırpan A, Toppare L (2023). Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. , 1271 - 1284. 10.55730/1300-0527.3611
Chicago OSMANOĞULLARI SILA CAN,Söylemez Saniye,KARAKURT Oğuzhan,Ozdemir Hacioglu Serife,Çırpan Ali,Toppare Levent Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. (2023): 1271 - 1284. 10.55730/1300-0527.3611
MLA OSMANOĞULLARI SILA CAN,Söylemez Saniye,KARAKURT Oğuzhan,Ozdemir Hacioglu Serife,Çırpan Ali,Toppare Levent Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. , 2023, ss.1271 - 1284. 10.55730/1300-0527.3611
AMA OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. . 2023; 1271 - 1284. 10.55730/1300-0527.3611
Vancouver OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. . 2023; 1271 - 1284. 10.55730/1300-0527.3611
IEEE OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L "Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability." , ss.1271 - 1284, 2023. 10.55730/1300-0527.3611
ISNAD OSMANOĞULLARI, SILA CAN vd. "Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability". (2023), 1271-1284. https://doi.org/10.55730/1300-0527.3611
APA OSMANOĞULLARI S, Söylemez S, KARAKURT O, Ozdemir Hacioglu S, Çırpan A, Toppare L (2023). Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turkish Journal of Chemistry, 47(5), 1271 - 1284. 10.55730/1300-0527.3611
Chicago OSMANOĞULLARI SILA CAN,Söylemez Saniye,KARAKURT Oğuzhan,Ozdemir Hacioglu Serife,Çırpan Ali,Toppare Levent Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turkish Journal of Chemistry 47, no.5 (2023): 1271 - 1284. 10.55730/1300-0527.3611
MLA OSMANOĞULLARI SILA CAN,Söylemez Saniye,KARAKURT Oğuzhan,Ozdemir Hacioglu Serife,Çırpan Ali,Toppare Levent Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.1271 - 1284. 10.55730/1300-0527.3611
AMA OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turkish Journal of Chemistry. 2023; 47(5): 1271 - 1284. 10.55730/1300-0527.3611
Vancouver OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turkish Journal of Chemistry. 2023; 47(5): 1271 - 1284. 10.55730/1300-0527.3611
IEEE OSMANOĞULLARI S,Söylemez S,KARAKURT O,Ozdemir Hacioglu S,Çırpan A,Toppare L "Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability." Turkish Journal of Chemistry, 47, ss.1271 - 1284, 2023. 10.55730/1300-0527.3611
ISNAD OSMANOĞULLARI, SILA CAN vd. "Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability". Turkish Journal of Chemistry 47/5 (2023), 1271-1284. https://doi.org/10.55730/1300-0527.3611