Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes

Yıl: 2023 Cilt: 32 Sayı: 6 Sayfa Aralığı: 740 - 763 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1872 İndeks Tarihi: 22-11-2023

Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes

Öz:
Zircon morphology parameters reflect the physicochemical conditions during crystallization and can be modified by different processes. Zircon populations from Miocene–Pliocene ignimbrites of the Central Anatolian Volcanic Province (CAVP) were studied to reveal relations between the external morphology of zircons and petrogenetic processes. Descriptive grain shape parameters (e.g., minor and major axes, area, perimeter, aspect ratio, roundness, and circularity) were automatically measured from transmitted light images of zircons by a graphical application called AnalyZr. Principal component and cluster analysis were used to determine potential shape descriptors (perimeter, major and minor axis length, and maximum and minimum Feret) for characterizing grains from a particular rock. Accordingly, zircons from ignimbrites display morphological variations, which can be attributed to a specific magmatic process. Zircon isotopic compositions from previous studies indicate that ignimbrites are derived from mantle sources, but due to the distinct contributions of crustal components and periodic mafic recharge, isotopic heterogeneity occurs in the genesis of the ignimbrites. Furthermore, the typological evolution of zircons has already revealed that even a small decrease in saturation and crystallization temperature can significantly alter the external morphology of zircons. The clear imprint of hybridization in the zircon morphology of CAVP ignimbrites might provide information about the development of zircon within silicic melts. This study offers new insight into the integration of data on shape and isotope variations in zircon populations that can be traced back to the magmatic controls on zircon crystal growth.
Anahtar Kelime: Zircon shape parameters morphology source magmatic processes

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akin L, Aydar E, Schmitt AK, Çubukçu HE (2019). Application of zircon typology method to felsic rocks (Cappadocia, Central Anatolia, Turkey): a zircon crystallization temperature perspective. Turkish Journal of Earth Science 28(3): 351-371. http://doi.org/10.3906/yer-1806-20
  • Akin L, Aydar E, Schmitt AK, Çubukçu HE, Gerdes A (2021). Zircon geochronology and O-Hf isotopes of Cappadocian ignimbrites: New insights into continental crustal architecture underneath the Central Anatolian Volcanic Province, Turkey. Gondwana Research 91: 166-187. https://doi.org/10.1016/j.gr.2020.12.003
  • Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O et al. (2012). Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research 213-214: 83-97. https://doi.org/10.1016/j. jvolgeores.2011.11.005
  • Bea F (1996). Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37: 521-552. https://doi.org/10.1093/ petrology/37.3.521
  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NL (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
  • Belousova EA, Griffin WL, O’Reilly SY (2006). Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian Granitoids. Journal of Petrology 47(2): 329-353. https://doi.org/10.1093/petrology/egi077
  • Benisek A, Finger F (1993). Factors controlling the development of prism faces in granite zircons: a microprobe study. Contributions to Mineralogy and Petrology 114(4): 441-451. http://doi.org/10.1007/bf00321749
  • BindemanIN(2003).Crystalsizesinevolvingsilicicmagmachambers. Geology 31(4): 367-370. https://doi.org/10.1130/0091- 7613(2003)031%3C0367:CSIESM%3E2.0.CO;2
  • Bindeman IN, Melnik OE (2016). Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling. Journal of Petrology 57(3): 437-460. https://doi.org/10.1093/petrology/egw013
  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013). Zircon saturation re-revisited. Chemical Geology 351: 324- 334. https://doi.org/10.1016/j.chemgeo.2013.05.028
  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW et al. (2005). Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. Journal of Petrology 46(1): 3-32. https://doi.org/10.1093/petrology/egh060
  • Cherniak DJ, Watson EB (2001). Pb diffusion in zircon. Chemical Geology 172(1-2): 5-24. https://doi.org/10.1016/S0009- 2541(00)00233-3
  • Claiborne LL, Miller CF, Gualda GA, Carley TL, Covey AK et al. (2018). Zircon as magma monitor: Robust, temperature dependent partition coefficients from glass and zircon surface and rim measurements from natural systems. Microstructural geochronology: Planetary records down to atom scale, geophysical monograph 232. Editors D.E. Moser, F. Corfu, J. R. Darling, S. M. Reddy, and K. Tait (American Geophysical Union., John Wiley & Sons, Inc.), pp. 1-33.
  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003). Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry 53(1): 469-500. https://doi.org/10.2113/0530469
  • Dhont D, Chorowicz J, Yürür T, Froger J-L, Köse O et al. (1998). Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research 85: 33-54. https://doi.org/10.1016/S0377- 0273(98)00048-1
  • Dirik K, Göncüoglu MC (1996). Neotectonic characteristics of Central Anatolia. International Geology Review 38: 807-817. https://doi.org/10.1080/00206819709465363
  • Dröllner M, Barham M, Kirkland CL, Ware B (2021). Every zircon deserves a date: selection bias in detrital geochronology. Geological Magazine 158(6): 1135-1142. https://doi. org/10.1017/S0016756821000145
  • Finch R, Hanchar J, Hoskin P, Burns P (2001). Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution. American Mineralogist 86(5-6): 681- 689. https://doi.org/10.2138/am-2001-5-608
  • Fowler A, Prokoph A, Stern R, Dupuis C (2002). Organization of oscillatory zoning in zircon: analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochimica et Cosmochimica Acta 66(2): 311-328. https://doi. org/10.1016/S0016-7037(01)00774-8
  • Gärtner A, Youbi N, Villeneuve M, Linnemann U, Sagawe A et al. (2018). Provenance of detrital zircon from siliciclastic rocks of the Sebkha Gezmayet unit of the Adrar Souttouf Massif (Moroccan Sahara)—Palaeogeographic implications. Comptes Rendus Geoscience 350: 255-266. https://doi.org/10.1016/j. crte.2018.06.004
  • Gagnevin D, Daly JS, Kronz A (2010). Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy and Petrology 159(4): 579-596. https://doi.org/10.1007/s00410-009-0443-0
  • Gervasoni F, Klemme S, Rocha-Júnior ER, Berndt J (2016). Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts. Contribution to Mineralogy and Petrology 171: 21. https://doi.org/10.1007/s00410-016-1227-y
  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY et al. (2002). Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 61: 237-269. https://doi.org/10.1016/S0024- 4937(02)00082-8
  • Hanchar JM, Finch RJ, Hoskin PW, Watson EB, Cherniak DJ et al. (2001). Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. American Mineralogist 86: 667-680.
  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36 (3): 289-303. https://doi.org/10.1016/0024- 4937(95)00022-4
  • Hoskin PW, Schaltegger U (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53(1): 27-62. https://doi. org/10.2113/0530027
  • Hoskin PW (2005). Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
  • Innocenti F, Mazzuoli R, Pasquarè G, Radicati Di Brozolo F, Villari L (1975). The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri—Nigde area. Geological Magazine 112: 349-360. https://doi.org/10.1017/ S0016756800046744
  • Kostov I (1973). Zircon morphology as a crystallogenetic indicator. Kristall und Technik 8:11-19.
  • Köksal S, Göncüoglu MC, Toksoy-Köksal F, Möller A, Kemnitz H (2008). Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. Mineralogy and Petrology 93(3): 185- 211. https://doi.org/10.1007/s00710-007-0228-y
  • Le Pennec JL, Bourdier, J-L, Forger J-L, Temel A, Camus G et al. (1994). Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints. Journal of Volcanology and Geothermal Research 63: 59-87. https://doi.org/10.1016/0377-0273(94)90018-3
  • Le Pennec JL, Temel A, Froger J-L, Sen S, Gourgaud A et al. (2005). Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paléontologie, radiochronologic, geochemical and paleomagnetic data. Journal of Volcanology and Geothermal Research 141: 45-64.
  • Lepetit P, Viereck L, Piper JDA, Sudo M, Gürel A et al. (2014). 40Ar/39Ar dating of ignimbrites and plinian air-fall layers from Cappadocia, Central Turkey: Implications to chronostratigraphic and Eastern Mediterranean palaeoenvironmental record. Chemie der Erde - Geochemistry 74(3): 471-488. https://doi.org/10.1016/j.chemer.2014.05.001
  • Makuluni P, Kirkland CL, Barham M (2019). Zircon grain shape holds provenance information: A case study from southwestern Australia. Geological Journal 54: 1279-1293. https://doi. org/10.1002/gj.3225
  • Markwitz V, Kirkland CL (2018). Source to sink zircon grain shape: Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance. Geoscience Frontiers 9(2): 415-430. https://doi.org/10.1016/j. gsf.2017.04.004
  • Martins HCB, Simões PP, Abreu J (2014). Zircon crystal morphology and internal structures as a tool for constraining magma sources: Examples from northern Portugal Variscan biotite- rich granite plutons. Comptes Rendus Geoscience 346(9-10): 233-243. https://doi.org/10.1016/j.crte.2014.07.004
  • Miller CF, McDowell SM, Mapes RW (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6): 529-532. https:// doi.org/10.1130/0091-7613(2003)031%3C0529:HACGIO%3E 2.0.CO;2
  • Mues-Schumacher U, Schumacher R (1996). Problems of stratigraphic correlation and new K-Ar data for ignimbrites from Cappadocia, Central Turkey. International Geology Review 38: 737-746. https://doi.org/10.1080/00206819709465357
  • Pasquarè G (1968). Geology of the Cenozoic Volcanic Area of Central Anatolia. Atti della Accademia Nazionale dei Lincei Roma 9: 55-204.
  • Pasquarè G, Poli S, Vezzoli L, Zanchi A (1988). Continental arc volcanism and tectonic setting in Central Anatolia, Turkey. Tectonophysic 146: 217-230. https://doi.org/10.1016/0040- 1951(88)90092-3
  • Piper JDA, Gürsoy H, Tatar O (2002). Palaeomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage. Journal of Volcanology and Geothermal Research 117(3-4): 237-262. https://doi.org/10.1016/S0377-0273(02)00221-4
  • Poldervaart A (1956). Zircon in rocks; 2, Igneous rocks. American Journal of Science 254(9): 521-554. https://doi.org/10.2475/ ajs.254.9.521
  • Pupin JP (1980). Zircon and granite petrology. Contribution to Mineralogy and Petrology 73: 207-220. https://doi.org/10.1007/ BF00381441
  • Pupin JP, Turco G (1972). Une typologie originale du zircon accessoire. Bulletin de Minéralogie 95(3): 348-359 (in French).
  • Salata D (2014). Advantages and limitations of interpretations of external morphology of detrital zircon: a case study of the Ropianka and Menilite Formations (Skole Nappe, Polish Flysch Carpathians). Annales. Societatis Geologorum Poloniae 84: 153-165.
  • Scharf T, Kirkland CL, Daggitt ML, Barham M, Puzyrev V (2022). AnalyZr: A Python application for zircon grain image segmentation and shape analysis. Computers & Geosciences 162: 105057. https://doi.org/10.1016/j.cageo.2022.105057
  • Schmitt AK, Danišík M, Evans NJ, Siebel W, Kiemele E et al. (2011). Acigöl rhyolite field, Central Anatolia (part 1): high- resolution dating of eruption episodes and zircon growth rates. Contributions to Mineralogy and Petrology 162: 1215-1231. https://doi.org/10.1007/s00410-011-0648-x
  • Schumacher R, Mues-Schumacher U (1996). The Kizilkaya ignimbrite–an unusual low-aspect-ratio ignimbrite from Cappadocia, central Turkey. Journal of Volcanology and Geothermal Research 70: 107-121. https://doi. org/10.1016/0377-0273(95)00046-1
  • Scoates JS, Chamberlain KR (1995). Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: Petrologic consequences and U-Pb ages. American Mineralogist 80(11-12): 1317-1327. https://doi. org/10.2138/am-1995-11-1222
  • Siebel W, Schmitt AK, Kiemele E, Danišík M, Aydin F (2011). Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr–Nd–Pb, δ18O) constraints on volcanism involving two high-silica rhyolite suites. Contributions to Mineralogy and Petrology 162: 1233-1247. https://doi.org/10.1007/s00410- 011-0651-2
  • Sorokin, MA, Melnik, OE, Bindeman, IN (2022). Modeling of zircon nucleation and growth rates using crystal size distributions in a cooling magmatic intrusion. Earth and Planetary Science Letters 577: 117254. https://doi.org/10.1016/j.epsl.2021.117254
  • Sturm R (2010). Morphology and growth trends of accessory zircons from various granitoids of the South-western Bohemian Massif (Moldanubicum, Austria). Geochemistry 70(2): 185-196. https://doi.org/10.1016/j.chemer.2009.05.001
  • Sturm R, Steyrer HP (2003). Use of accessory zircon for the quantification of volume changes in ductile shear zones cutting plutonic rocks. Geochemistry 63(1): 31-54. https://doi. org/10.1078/0009-2819-00019
  • Temel A, Gündogdu MN, Gourgaud A, Le Pennec J-L (1998). Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry. Journal of Volcanology and Geothermal Research 85: 447-471. https://doi.org/10.1016/ S0377-0273(98)00066-3
  • Varol Muratçay, E., Tatar Erkül S. Külahcı GD (2021) Mineralogical and gemmological characteristics of garnets associated with xenoliths within trachyte dome, Hisarlıkaya (Ankara), Central Anatolia, Turkey. Turkish Journal of Earth Sciences, (30) 2, 379-391.
  • Vavra G (1990). On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contribution to Mineralogy and Petrology 106: 90-99. https:// doi.org/10.1007/BF00306410
  • Vavra G (1994). Systematics of internal zircon morphology in major Variscan granitoid types. Contribution to Mineralogy and Petrology 117: 331-344. https://doi.org/10.1007/BF00307269
  • Vavra G, Schmid R, Gebauer D (1999). Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology 134(4): 380-404. https://doi.org/10.1007/s004100050492
  • Viereck-Goette L, Lepetit P, Gürel A, Ganskow G, Çopuroğlu I et al. (2010). Revised volcanostratigraphy of the upper Miocene to lower Pliocene Ürgüp Formation, Central Anatolian volcanic province, Turkey. Special Paper of the Geological Society of America 464: 85-112. https://doi.org/10.1130/2010.2464(05)
  • Wang X (1998). Quantitative description of zircon morphology and its dynamics analysis. Science in China Series D: Earth Sciences 41: 422-428. https://doi.org/10.1007/BF02932695
  • Wang X, Griffin W, O’Reilly S, Zhou X, Xu X et al. (2002). Morphology and geochemistry of zircons from late Mesozoic igneous complexes in coastal SE China: Implications for petrogenesis. Mineralogical Magazine 66(2): 235-251. https:// doi.org/10.1180/0026461026620025
  • Watson EB (1979). Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology 70: 407-419.
  • Watson EB, Harrison TM (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64(2): 295- 304. https://doi.org/10.1016/0012-821X(83)90211-X
  • Yildirim C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011). Late Neogene orogenic uplift in the Central Pontides associated with the North Anatolian fault – implications for the northern margin of the Central Anatolian plateau, Turkey. Tectonics 30(5): 1-24. https://doi.org/10.1029/2010TC002756
  • Yue W, Yue X, Zhang L, Liu X, Song J (2019). Morphology of detrital zircon as a fingerprint to trace sediment provenance: Case study of the Yangtze Delta. Minerals 9(7): 438. https://doi. org/10.3390/min9070438
  • Zeh A, Wilson AH, Gudelius D, Gerdes A (2019). Hafnium isotopic composition of the Bushveld Complex requires mantle melt– upper crust mixing: new evidence from zirconology of mafic, felsic and metasedimentary rocks. Journal of Petrology 60(11): 2169-2200. https://doi.org/10.1093/petrology/egaa004
  • Zeh A, Cabral AR (2021). Combining detrital zircon shape and U–Pb–Hf isotope analyses for provenance studies–An example from the Aquiri region, Amazon Craton, Brazil. Precambrian Research 364: 106343. https://doi.org/10.1016/j. precamres.2021.106343
APA Akin L (2023). Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. , 740 - 763. 10.55730/1300-0985.1872
Chicago Akin Lutfiye Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. (2023): 740 - 763. 10.55730/1300-0985.1872
MLA Akin Lutfiye Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. , 2023, ss.740 - 763. 10.55730/1300-0985.1872
AMA Akin L Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. . 2023; 740 - 763. 10.55730/1300-0985.1872
Vancouver Akin L Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. . 2023; 740 - 763. 10.55730/1300-0985.1872
IEEE Akin L "Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes." , ss.740 - 763, 2023. 10.55730/1300-0985.1872
ISNAD Akin, Lutfiye. "Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes". (2023), 740-763. https://doi.org/10.55730/1300-0985.1872
APA Akin L (2023). Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. Turkish Journal of Earth Sciences, 32(6), 740 - 763. 10.55730/1300-0985.1872
Chicago Akin Lutfiye Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. Turkish Journal of Earth Sciences 32, no.6 (2023): 740 - 763. 10.55730/1300-0985.1872
MLA Akin Lutfiye Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. Turkish Journal of Earth Sciences, vol.32, no.6, 2023, ss.740 - 763. 10.55730/1300-0985.1872
AMA Akin L Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. Turkish Journal of Earth Sciences. 2023; 32(6): 740 - 763. 10.55730/1300-0985.1872
Vancouver Akin L Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes. Turkish Journal of Earth Sciences. 2023; 32(6): 740 - 763. 10.55730/1300-0985.1872
IEEE Akin L "Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes." Turkish Journal of Earth Sciences, 32, ss.740 - 763, 2023. 10.55730/1300-0985.1872
ISNAD Akin, Lutfiye. "Zircon grain shape parameters from ignimbrites of the Central Anatolian Volcanic Province (CAVP) with implications for petrogenetic processes". Turkish Journal of Earth Sciences 32/6 (2023), 740-763. https://doi.org/10.55730/1300-0985.1872