Yıl: 2023 Cilt: 47 Sayı: 6 Sayfa Aralığı: 492 - 504 Metin Dili: İngilizce DOI: 10.55730/1300-0179.3150 İndeks Tarihi: 24-11-2023

Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say)

Öz:
RNA interference (RNAi) is a versatile genetic tool capable of selectively inhibiting the expression of any gene in a targeted organism. Its implementation holds great promise for safeguarding crops against insect pests and diseases. Vacuolar-ATPase represents an ideal target for RNAi-based pest management strategies since it is an enzyme essential for various physiological processes in insects. In this study, double-stranded RNA (dsRNA) was synthesized using an L4440 vector in Escherichia coli HT115 strain to silence the Vacuolar-ATPase proteolipid subunit mRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). To assess the effectiveness of RNAi, L. decemlineata larvae at different developmental stages were fed potato leaflets treated with dsRNA. The feeding bioassays using dsV-ATPase resulted in significant mortality rates, ranging from 45% to 77% across all of the instar stages of L. decemlineata. Furthermore, ingestion of dsRNAs by third- and fourth-instar larvae exerted significant effects on their body weight and foliage consumption. Notably, feeding the larvae dsV-ATPase led to a significant reduction in V-ATPase gene expression, confirming the efficacy of RNAi-mediated gene silencing in controlling L. decemlineata populations. These findings highlight the potential of RNAi-mediated gene silencing as a valuable strategy for managing L. decemlineata populations by targeting essential genes.
Anahtar Kelime: RNA interference Vacuolar-ATPase mortality transcript expression

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adeyinka OS, Nasir IA, Riaz S, Yousaf I, Toufiq N et al. (2021). A protective dsRNA is Crucial for Optimum RNAi Gene Silencing in Chilo partellus. International Journal of Agriculture and Biology 25: 1238-48. http://doi.org/10.17957/IJAB/15.1785
  • Ahn SJ, Donahue K, Koh Y, Martin RR, Choi MY (2019). Microbial- based double-stranded RNA production to develop cost- effective RNA interference application for insect pest management. International Journal of Insect Science 11: 1179543319840323. http://doi.org/10.1177/1179543319840323
  • Alyokhin A, Chen YH (2017). Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. Current Opinion in Insect Science 21: 33-8. http://doi.org/10.1016/j. cois.2017.04.006
  • Bai S, Jin D, Jiang Y, Chen F, Cheng W et al. (2023). Development of a recombinant baculovirus with dual effects to mediate V-ATPase interference by RNA in the fall armyworm Spodoptera frugiperda. Journal of Pest Science 24: 1-5. http:// doi.org/10.1007/s10340-023-01626-4
  • Basnet S, Kamble ST (2018). RNAi-mediated knockdown of vATPase subunits affects survival and reproduction of bed bugs (Hemiptera: Cimicidae). Journal of Medical Entomology 55 (3): 540-6. http://doi.org/10.1093/jme/tjy001
  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25 (11): 1322-1326. http:// doi.org/10.1038/nbt1359
  • Chang AY, Chau V, Landas JA, Pang Y (2017). Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 1 (22-25).
  • Chang YW, Wang YC, Zhang XX, Iqbal J, Du YZ (2021). RNA interference of genes encoding the vacuolar-ATPase in Liriomyza trifolii. Insects 12 (1) :41. http://doi.org/10.3390/ insects12010041
  • Chen YH, Cohen ZP, Bueno EM, Christensen BM, Schoville SD (2022). Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Current Opinion in Insect Science 101000. http://dx.doi.org/10.1016/j. cois.2022.101000
  • Chi H (2015). CONSUME-MSChart: A computer program for the predation rate analysis based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan.
  • Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science 75 (1): 18-28. https://doi. org/10.1002/ps.5126
  • Cullen BR (2002). RNA interference: antiviral defense and genetic tool. Nature Immunology 3 (7): 597-599. http://dx.doi. org/10.1038/ni0702-597
  • Dominska M, Dykxhoorn, D.M. (2010). Breaking down the barriers: siRNA delivery and endosome escape. Journal of Cell Science 123 (8): 1183-1189. https://doi.org/10.1242/jcs.066399
  • Guo CF, Qiu JH, Hu YW, Xu PP, Deng YQ et al. (2022). Silencing of V-ATPase-E gene causes midgut apoptosis of Diaphorina citri and affects its acquisition of Huanglongbing pathogen. Insect Science 30 (4): 1022-1034. http://dx.doi.org/10.1111/1744- 7917.13146
  • Henderson CF, Tilton EW (1955). Tests with acaricides against brown wheat mite. Journal of Economic Entomology 48 (2): 157-161. http://dx.doi.org/10.1093/jee/48.2.157
  • Huvenne H, Smagghe G (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology 56 (3): 227-235. http://dx.doi.org/10.1016/j. jinsphys.2009.10.004
  • Ibrahim AB, Monteiro TR, Cabral GB, Aragão FJ (2017). RNAi- mediated resistance to whitefly ( Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Research 26 (5): 613-624. https://link.springer.com/article/10.1007/s11248-017- 0035-0
  • Jäger D, Novak FJ, Harvey WR, Wieczorek H, Klein U (1996). Temporal and spatial distribution of V-ATPase and its mRNA in the midgut of moulting Manduca sexta. Journal of Experimental Biology 199 (5): 1019-1027. http://dx.doi.org/10.1242/jeb.199.5.1019
  • Jin S, Singh ND, Li L, Zhang X, Daniell H (2015). Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnology Journal 13 (3): 435-446. http://dx.doi. org/10.1111/pbi.12355
  • Joga, M.R., Zotti, M.J., Smagghe, G. and Christiaens, O. (2016). RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Frontiers in Physiology 7: 553. https://doi.org/10.3389/fphys.2016.00553
  • Kadoić Balaško M, Mikac KM, Bažok R, Lemic D (2020). Modern techniques in Colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: history review and future perspectives. Insects 11 (9): 581. http://dx.doi. org/10.3390/insects11090581
  • Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2000). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2: 1-10. http://dx.doi.org/10.1186/gb- 2000-2-1-research0002
  • Kanost, M.R., 2009. Hemolymph. In Encyclopedia of insects Academic Press 446-449
  • Khalil SM, Alahmed AM, Munawar K (2023). RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Acta Tropica 106938. http://dx.doi. org/10.1016/j.actatropica.2023.106938
  • Khan MM, Lee S, Couoh-Cardel S, Oot RA, Kim H et al. (2022). Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. The EMBO Journal 41 (3): e109360. http://dx.doi.org/10.15252/ embj.2021109360
  • Kim CY, Kim Y (2023). In vivo transient expression of a viral silencing suppressor, NSs, derived from tomato spotted wilt virus decreases insect RNAi efficiencies. Archives of Insect Biochemistry and Physiology 112 (2): e21982. http://dx.doi. org/10.1002/arch.21982
  • Knorr E, Fishilevich E, Tenbusch L, Frey ML, Rangasamy M et al. (2018). Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Scientific Reports 8 (1): 2061.
  • Kroschel J, Mujica N, Okonya J, Alyokhin A (2020). Insect pests affecting potatoes in tropical, subtropical, and temperate regions. In: The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind pp. 251-306. http://dx.doi. org/10.1007/978-3-030-28683-5_8
  • Laudani F, Strano CP, Edwards MG, Malacrinò A, Campolo O et al. (2017). RNAi-mediated gene silencing in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Open Life Sciences 12 (1): 214-222. http://dx.doi.org/10.1515/biol-2017- 0025
  • Li C, Xia Y (2012). Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis. Insect Molecular Biology 21 (4): 405-413. http://dx.doi.org/10.1111/ j.1365-2583.2012.01147.x
  • Li J, Chen Q, Lin Y, Jiang T, Wu G et al. (2011). RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Management Science 67 (7): 852-859. http://dx.doi.org/10.1002/ps.2124
  • Li X, Yin H, Guo W, Niu X, Dong G et al. (2022). RNAi Suppression of Vacuolar ATPase Subunit H Inhibits Immunity-Related Gene Expression in Pine Sawyer Beetle (Coleoptera: Cerambycidae). Journal of Entomological Science 57 (2): 204-212. http:// dx.doi.org/10.18474/JES21-33
  • List F, Tarone AM, Zhu-Salzman K, Vargo EL (2022). RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management. Pest Management Science 78 (8): 3215-3225. http://dx.doi.org/10.1002/ps.6884
  • Liu N, Li Y, Zhang R (2012). Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact. Entomologia Experimentalis et Applicata 143 (3): 207-217. http://dx.doi.org/10.1111/j.1570- 7458.2012.01259.x
  • Liu XJ, Liang XY, Guo J, Shi XK, Merzendorfer H et al. (2022). V-ATPase subunit a is required for survival and midgut development of Locusta migratoria. Insect Molecular Biology 31 (1): 60-72. https://doi.org/10.1111/imb.12738
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 (4): 402-408. https://doi.org/10.1006/ meth.2001.1262
  • Lü J, Guo M, Chen S, Noland JE, Guo W et al. (2020). Double- stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology 165: 104555. http:// dx.doi.org/10.1016/j.pestbp.2020.104555
  • Mamta B, Rajam MV (2017). RNAi technology: a new platform for crop pest control. Physiology and Molecular Biology of Plants 23: 487-501. http://dx.doi.org/10.1007/s12298-017-0443-x
  • Mao J, Zhang P, Liu C, Zeng F (2015). Co-silence of the coatomer β and V-ATPase A genes by siRNA feeding reduces larval survival rate and weight gain of cotton bollworm, Helicoverpa armigera. Pesticide Biochemistry and Physiology 118: 71-76. http://dx.doi. org/10.1016/j.pestbp.2014.11.013
  • Miele, E., Spinelli, G.P., Miele, E., Di Fabrizio, E., Ferretti, E et al. (2012). Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. International Journal of Nanomedicine 3637-3657. https://doi.org/10.2147/IJN.S23696
  • Mohammed AM (2016). RNAi-based silencing of genes encoding the vacuolar-ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). African Journal of Biotechnology 15 (45): 2547-2557. http://dx.doi.org/10.5897/AJB2016.15611
  • Naqqash MN, Gökçe A, Aksoy E, Bakhsh A (2020). Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). Chemosphere 240: 124857. http:// dx.doi.org/10.1016/j.chemosphere.2019.124857
  • Neumeier J, Meister G (2021). siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects. Frontiers in Plant Science 11: 526455. http://dx.doi.org/10.3389/fpls.2020.526455
  • Oot RA, Couoh-Cardel S, Sharma S, Stam NJ, Wilkens S (2017). Breaking up and making up: The secret life of the vacuolar H+-ATPase. Protein Science 26 (5): 896-909. http://dx.doi. org/10.1002/pro.3147
  • Pallis S, Alyokhin A, Manley B, Rodrigues TB, Buzza A et al. (2022). Toxicity of a novel dsRNA-based insecticide to the Colorado potato beetle in laboratory and field trials. Pest Management Science 78 (9): 3836-3848. http://dx.doi.org/10.1002/ps.6835
  • Peng C, Yin H, Liu Y, Mao XF, Liu ZY (2022). RNAi mediated gene silencing of detoxification related genes in the Ectropis oblique. Genes 13 (7): 1141. http://dx.doi.org/10.3390/genes13071141
  • Rahmani S, Bandani AR (2021). A gene silencing of V-ATPase subunit A interferes with survival and development of the tomato leafminer, Tuta absoluta. Archives of Insect Biochemistry and Physiology 106 (1): e21753. https://doi.org/10.1002/arch.21753
  • Rodrigues TB, Mishra SK, Sridharan K, Barnes ER, Alyokhin A et al. (2021). First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle ( Leptinotarsa decemlineata). Frontiers in Plant Science 12: 728652. http://dx.doi.org/10.3389/fpls.2021.728652
  • San Miguel K, Scott JG (2016). The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Management Science 72 (4): 801-809. https://doi.org/10.1002/ps.4056
  • Shah TH (2017). Plant nutrients and insects development. International Journal of Entomology Research 2 (6): 54-57.
  • Shi JF, Mu LL, Chen X, Guo WC, Li GQ (2016). RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). International Journal of Biological Sciences 12 (11): 1319. http:// dx.doi.org/10.7150/ijbs.14464
  • Shi X, Liu X, Cooper AM, Silver K, Merzendorfer H et al. (2022). Vacuolar (H+)-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. Pest Management Science 78 (4): 1555-1566. http://dx.doi. org/10.1002/ps.6774
  • Silver K, Cooper AM, Zhu KY (2021). Strategies for enhancing the efficiency of RNA interference in insects. Pest Management Science 77 (6): 2645-2658. http://dx.doi.org/10.1002/ps.6277
  • Statistix v. 10 analytical software, Tallahassee, FL, USA (2017). Available from: https://statistix.informer.com/10.0/
  • Szendrei, Z., Grafius, E., Byrne, A., Ziegler, A. (2012). Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Management Science 68 (6): 941-946. https://doi.org/10.1002/ps.3258
  • Tamura K, Stecher G, Kumar S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38 (7): 3022-3027. https://doi.org/10.1093/ molbev/msab120
  • Taning CN, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H et al. (2020). RNA-based biocontrol compounds: current status and perspectives to reach the market. Pest Management Science 76 (3): 841-845. https://doi.org/10.1002/ps.5686
  • Thakur BK, Zhang H, Becker A, Matei I, Huang Y et al. (2014). Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell research 24 (6): 766-9. http://dx.doi. org/10.1038/cr.2014.44
  • Tian H, Peng H, Yao Q, Chen H, Xie Q et al. (2009). Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4 (7): e6225. http://dx.doi.org/10.1371/journal.pone.0006225
  • Timmons, L., Court, D.L., Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 (1-2): 103- 112. https://doi.org/10.1016/S0378-1119(00)00579-5
  • Toei, M., Saum, R., Forgac, M. (2010). Regulation and isoform function of the V-ATPases. Biochemistry 49 (23): 4715-4723. https://doi.org/10.1021/bi100397s
  • Tomoyasu, Y., Denell, R.E. (2004). Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution 214: 575-578. https://doi.org/10.1007/ s00427-004-0434-0
  • Vasanthakumar T, Rubinstein JL (2020). Structure and roles of V-type ATPases. Trends in Biochemical Sciences 45 (4): 295- 307. https://doi.org/10.1016/j.tibs.2019.12.007
  • Vélez AM, Fishilevich E (2018). The mysteries of insect RNAi: A focus on dsRNA uptake and transport. Pesticide Biochemistry and Physiology 151: 25-31. http://dx.doi.org/10.1016/j. pestbp.2018.08.005
  • Vitavska, O., Merzendorfer, H., Wieczorek, H. (2005). The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. Journal of Biological Chemistry 280 (2): 1070-1076.
  • Whangbo JS, Hunter CP (2008). Environmental RNA interference. Trends in Genetics 24 (6): 297-305. https://doi.org/10.1016/j. tig.2008.03.007
  • Wieczorek H, Beyenbach KW, Huss M, Vitavska O (2009). Vacuolar- type proton pumps in insect epithelia. Journal of Experimental Biology 212 (11): 1611-1619. http://dx.doi.org/10.1242/ jeb.030007
  • Wieczorek H, Grüber G, Harvey WR, Huss M, Merzendorfer H et al. (2000). Structure and regulation of insect plasma membrane H+ V-ATPase. Journal of Experimental Biology 203 (1): 127- 135. https://doi.org/10.1242/jeb.203.1.127
  • Yang S, Zou Z, Xin T, Cai S, Wang X et al. (2022). Knockdown of hexokinase in Diaphorina citri Kuwayama (Hemiptera: Liviidae) by RNAi inhibits chitin synthesis and leads to abnormal phenotypes. Pest Management Science 78 (10): 4303-4313. http://dx.doi.org/10.1002/ps.7049
  • Yao J, Rotenberg D, Afsharifar A, Barandoc-Alviar K, Whitfield AE (2013). Development of RNAi methods for Peregrinus maidis, the corn planthopper. PLoS One 8 (8): e70243. http://dx.doi. org/10.1371/journal.pone.0070243
  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 1-11. http://dx.doi.org/10.1186/1471-2105-13-134
  • Yu N, Christiaens O, Liu J, Niu J, Cappelle K et al. (2013). Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science 20 (1): 4-14. http://dx.doi.org/10.1111/j.1744- 7917.2012.01534.x
  • Zeng J, Kang WN, Jin L, Anjum AA, Li GQ (2021). Knockdown of vacuolar ATPase subunit G gene affects larval survival and impairs pupation and adult emergence in Henosepilachna vigintioctopunctata. Insects 12 (10): 935. http://dx.doi. org/10.3390/insects12100935
  • Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG et al. (2015). Full crop protection from an insect pest by expression of long double stranded RNAs in plastids. Science 347 (6225): 991-994. http:// dx.doi.org/10.1126/science.1261680
  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Management Science 67 (2): 175-182. http://dx.doi.org/10.1002/ps.2048
APA Tariq H, Gökçe A, Aksoy E, Elçi E, Bakhsh A (2023). Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). , 492 - 504. 10.55730/1300-0179.3150
Chicago Tariq Haneef,Gökçe Ayhan,Aksoy Emre,Elçi Eminur,Bakhsh Allah Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). (2023): 492 - 504. 10.55730/1300-0179.3150
MLA Tariq Haneef,Gökçe Ayhan,Aksoy Emre,Elçi Eminur,Bakhsh Allah Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). , 2023, ss.492 - 504. 10.55730/1300-0179.3150
AMA Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). . 2023; 492 - 504. 10.55730/1300-0179.3150
Vancouver Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). . 2023; 492 - 504. 10.55730/1300-0179.3150
IEEE Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A "Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say)." , ss.492 - 504, 2023. 10.55730/1300-0179.3150
ISNAD Tariq, Haneef vd. "Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say)". (2023), 492-504. https://doi.org/10.55730/1300-0179.3150
APA Tariq H, Gökçe A, Aksoy E, Elçi E, Bakhsh A (2023). Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). Turkish Journal of Zoology, 47(6), 492 - 504. 10.55730/1300-0179.3150
Chicago Tariq Haneef,Gökçe Ayhan,Aksoy Emre,Elçi Eminur,Bakhsh Allah Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). Turkish Journal of Zoology 47, no.6 (2023): 492 - 504. 10.55730/1300-0179.3150
MLA Tariq Haneef,Gökçe Ayhan,Aksoy Emre,Elçi Eminur,Bakhsh Allah Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). Turkish Journal of Zoology, vol.47, no.6, 2023, ss.492 - 504. 10.55730/1300-0179.3150
AMA Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). Turkish Journal of Zoology. 2023; 47(6): 492 - 504. 10.55730/1300-0179.3150
Vancouver Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say). Turkish Journal of Zoology. 2023; 47(6): 492 - 504. 10.55730/1300-0179.3150
IEEE Tariq H,Gökçe A,Aksoy E,Elçi E,Bakhsh A "Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say)." Turkish Journal of Zoology, 47, ss.492 - 504, 2023. 10.55730/1300-0179.3150
ISNAD Tariq, Haneef vd. "Exploring the efficacy of RNAi-mediated gene knock-down via oral delivery of dsRNA in the Colorado potato beetle (Leptinotarsa decemlineata Say)". Turkish Journal of Zoology 47/6 (2023), 492-504. https://doi.org/10.55730/1300-0179.3150