Yıl: 2023 Cilt: 53 Sayı: 5 Sayfa Aralığı: 1019 - 1031 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5667 İndeks Tarihi: 24-11-2023

Current developments in surface electromyography

Öz:
Background/aim: Surface electromyography (surface EMG) is a primary technique to detect the electrical activities of muscles through surface electrodes. In recent years, surface EMG applications have grown from conventional fields into new fields. However, there is a gap between the progress in the research of surface EMG and its clinical acceptance, characterized by the translational knowledge and skills in the widespread use of surface EMG among the clinician community. To reduce this gap, it is necessary to translate the updated surface EMG applications and technological advances into clinical research. Therefore, we aimed to present a perspective on recent developments in the application of surface EMG and signal processing methods. Materials and methods: We conducted this scoping review following the Joanna Briggs Institute (JBI) method. We conducted a general search of PubMed and Web of Science to identify key search terms. Following the search, we uploaded selected articles into Rayyan and removed duplicates. After prescreening 133 titles and abstracts, we assessed 91 full texts according to the inclusion criteria. Results: We concluded that surface EMG has made innovative technological progress and has research potential for routine clinical applications and a wide range of applications, such as neurophysiology, sports and art performances, biofeedback, physical therapy and rehabilitation, assessment of physical exercises, muscle strength, fatigue, posture and postural control, movement analysis, muscle co- ordination, motor synergies, modelling, and more. Novel methods have been applied for surface EMG signals in terms of time domain, frequency domain, time–frequency domain, statistical methods, and nonlinear methods. Conclusion: Translating innovations in surface EMG and signal analysis methods into routine clinical applications can be a helpful tool with a growing and valuable role in muscle activation measurement in clinical practices. Thus, researchers must build many more interfaces that give opportunities for continuing education and research with more contemporary techniques and devices.
Anahtar Kelime: Surface electromyography neurophysiology electrophysiology kinesiology biofeedback

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Feldner HA, Howell D, Kelly VE, McCoy SW, Steele KM. “Look, your muscles are firing!”: a qualitative study of clinician perspectives on the use of surface electromyography in neurorehabilitation. Archives of Physical Medicine and Rehabilitation 2019; 100 (4): 663-675.https://doi.org/10.1016/j. apmr.2018.09.120
  • 2. Merletti R, Campanini I, Rymer WZ, Disselhorst-Klug C. Surface electromyography: barriers limiting widespread use of sEMG in clinical assessment and neurorehabilitation. Frontiers in Neurology 2021; 12: 642257. https://doi.org/10.3389/ fneur.2021.642257
  • 3. Besomi M, Hodges PW, Van Dieën J, Carson RG, Clancy EA et al. Consensus for experimental design in electromyography (CEDE) project: electrode selection matrix. Journal of Electromyography and Kinesiology 2019; 48: 128-144. https:// doi.org/10.1016/j.jelekin.2019.07.008
  • 4. Merletti R. The electrode-skin interface and optimal detection of bioelectric signals. Physiological Measurement 2010; 31 (10): 1-4. https://doi.org/10.1088/09673334/31-/10/E01
  • 5. Chi Y, Tzyy-Ping J, Gert C. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Reviews in Biomedical Engineering 2010; 3: 106-119. https://doi. org/10.1109/RBME.2010.2084078
  • 6. Alcan V, Harputlu E, Ünlü G, Ocakoğlu K, Zinnuroğlu M. Investigation of graphene-coated Ag/AgCl electrode performance in surface electromyography measurement. Biosensors and Bioelectronics: X 2022; 11: 100193. https://doi. org/10.1016-/j.biosx.2022.100193
  • 7. Keshwani N, McLean L. State of the art review: intravaginal probes for recording electromyography from the pelvic floor muscles. Neurourology and Urodynamics 2015; 34 (2): 104- 112. https://doi.org/10.1002/nau.22529
  • 8. Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection system parameters on surface EMG. Biological Cybernetics 2002; 86: 445-456. https://doi. org/10.1007/s00422-002-0309-2
  • 9. Drost G, Stegeman DF, van Engelen BG, Zwarts MJ. Clinical applications of high-density surface EMG: a systematic review. Journal of Electromyography and Kinesiology 2006; 16 (6): 586-602. htps://doi.org/10.1016/j.jelekin.2006.09.005
  • 10. Merletti R, Parker P. Electromyography: Physiology, Engineering and Noninvasive Applications. Hoboken, NJ, USA: IEEE Press and John Wiley & Sons; 2004.
  • 11. MesinL,MerlettiR,RainoldiA.SurfaceEMG:theissueofelectrode location. Journal of Electromyography and Kinesiology 2009; 19 (5): 719-726. https://doi.org/10.1016/j.jelekin.2008.07.006
  • 12. Merlett R, Muceli S. Tutorial. Surface EMG detection in space and time: best practices. Journal of Electromyography and Kinesiology 2019; 49: 102363. https://doi.org/10.1016/j. jelekin.2019.102363
  • 13. Phinyomark A, Phukpattaranont P, Limsakul C. Feature reduction and selection for EMG signal classification. Expert Systems with Applications 2012; 39 (8): 7420-7431. https://doi. org/10.1016/j.eswa.2012.01.102
  • 14. Kendell C, Lemaire ED, Losier Y, Wilson A, Chan A et al. A novel approach to surface electromyography: an exploratory study of electrode-pair selection based on signal characteristics. Journal of NeuroEngineering and Rehabilitation 2012; 9 (1): 24. https://doi.org/10.1186/1743-0003-9-24
  • 15. Fougner A, Scheme E, Chan ADC, Englehart K, Stavdahl Ø. Resolving the limb position effect in myoelectric pattern recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2011; 19 (6): 644-651. https://doi. org/10.1109/TNSRE.2011.2163529
  • 16. Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 1993; 40 (1): 82-94. https://doi. org/10.1109/10.204774
  • 17. Zhang ZG, Liu HT, Chan SC, Luk KD, Hu Y. Time-dependent power spectral density estimation of surface electromyography during isometric muscle contraction: methods and comparisons. Journal of Electromyography and Kinesiology 2010; 20 (1): 89- 101. https://doi.org/10.1016/j.jelekin.2008.09.007
  • 18. She H, Zhu J, Tian Y, Wang Y, Yokoi H et al. SEMG feature extraction based on Stockwell transform improves hand movement recognition accuracy. Sensors (Basel) 2019; 19 (20): 4457. https://doi.org/10.3390/s19204457
  • 19. Alcan V, Canal MR, Zinnuroğlu M. Using fuzzy logic for diagnosis and classification of spasticity. Turkish Journal of Medical Sciences 2017: 47 (1): 148-160.https://doi.org/10.3906/ sag-1512-65
  • 20. Zhang X, Zhou P. Filtering of surface EMG using ensemble empirical mode decomposition. Medical Engineering & Physics 2013; 35 (4): 537-542. https://doi.org/10.1016/j. medengphy.2012.10.009
  • 21. Chua K, Chandran V, Rajendra AU, Min LC. Application of higher order statistics/spectra in biomedical signals: a review. Medical Engineering & Physics 2010; 32 (7): 679-689. https:// doi.org/10.1016/j.medengphy.2010.04.009
  • 22. Nazarpour K, Al-Timemy AH, Bugmann G, Jackson A. A note on the probability distribution function of the surface electromyogram signal. Brain Research Bulletin 2013; 90: 88- 91. https://doi.org/10.1016/j.brainresbull.2012.09.012
  • 23. Wu J, Li X, Liu W, Wang ZJ. sEMG signal processing methods: a review. Journal of Physics: Conference Series 2019; 1237 (3): 032008. https://doi.org/10.1088/1742-6596/1237/3/032008
  • 24. Alcan V. Nonlinear analysis of stride interval time series in gait maturation using distribution entropy. IRBM 2021; 43 (4): 309-316. https://doi.org/10.1016/j.irbm.2021.02.001
  • 25. Minetto MA, Holobar A, Botter A, Farina D. Discharge properties of motor units of the abductor hallucis muscle during cramp contraction. Journal of Neurophysiology 2009; 102 (3): 1890-1901. https://doi.org/10.1152/jn.00309.2009
  • 26. Duclay J, Martin A, Robbe A, Pousson M. Spinal reflex plasticity during maximal dynamic contractions after eccentric training. Medicine & Science in Sports & Exercise 2008; 40 (4): 722-734. https://doi.org/10.1249/MSS.0b013e31816184dc
  • 27. Enoka RM, Baudry S, Rudroff T, Farina D, Klass M et al. Unraveling the neurophysiology of muscle fatigue. Journal of Electromyography and Kinesiology 2011; 21 (2): 208-219. https://doi.org/10.1016/j.jelekin.2010.10.006
  • 28. Baudry S, Penzer F, Duchateau J. Input–output characteristics of soleus homonymous Ia afferents and corticospinal pathways during upright standing differ between young and elderly adults. Acta Physiologica (Oxford) 2014; 210 (3): 667-677. https://doi.org/10.1111/apha.12233
  • 29. Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E et al. Effects of aging on motor cortex excitability. Neuroscience Research 2006; 55 (1): 74-77. https://doi.org/10.1016/j. neures.2006.02.002
  • 30. Merletti R, Knaflitz M, De Luca CJ. Electrically evoked myoelectric signals. Critical Reviews in Biomedical Engineering 1992; 19 (4): 293-340.
  • 31. Bax L, Staes F, Verhagen A. “Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Medicine 2005; 35 (3): 191-212. https://doi.org/10.2165/00007256- 200535030-00002
  • 32. Creasey GH, Ho CH, Triolo RJ, Gater DR, DiMarco AF et al. Clinical applications of electrical stimulation after spinal cord injury. The Journal of Spinal Cord Medicine 2004; 27 (4): 365- 375. https://doi.org/10.1080/10790268.2004.11753774
  • 33. Newsam CJ, Baker LL. Effect of an electric stimulation facilitation program on quadriceps motor unit recruitment after stroke. Archives of Physical Medicine and Rehabilitation 2004; 85 (12): 2040-2045. https://doi.org/10.1016/j. apmr.2004.02.029
  • 34. Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Archives of Physical Medicine and Rehabilitation 2000; 81 (8): 1090-1098. https://doi.org/10.1053/apmr.2000.7170
  • 35. van Dijk JP, Schelhaas HJ, Van Schaik IN, Janssen HM, Stegeman DF et al. Monitoring disease progression using high- density motor unit number estimation in amyotrophic lateral sclerosis. Muscle & Nerve 2010; 42 (2): 239-244. https://doi. org/10.1002/mus.21680
  • 36. Merletti R, Roy S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. Journal of Orthopaedic & Sports Physical Therapy 1996; 24 (6): 342-353. https://doi.org/10.2519/jospt.1996.24.6.342
  • 37. Rainoldi A, Galardi G, Maderna L, Comi G, Lo Conte L et al. Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii. Journal of Electromyography and Kinesiology 1999; 9 (2): 105-119. https://doi.org/10.1016/S1050-6411(98)00042-X
  • 38. Watanabe K, Miyamoto T, Tanaka Y, Fukuda K, Moritani T. Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction. Diabetes Research and Clinical Practice 2012; 97 (3): 468-473. https://doi.org/10.1016/j.diabres.2012.03.004
  • 39. Kisiel-Sajewicz K, Siemionow V, Seyidova-Khoshknabi D, Davis MP, Wyant A et al. Myoelectrical manifestation of fatigue less prominent in patients with cancer related fatigue. PLoS One 2013; 8 (12): e83636. https://doi.org/10.1371/journal. pone.0083636
  • 40. Karst GM, Willet GM. Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Physical Therapy 1995; 75 (9): 813-823. https://doi. org/10.1093/ptj/75.9.813
  • 41. Falla D, Jull G, O’Leary S, Dall’Alba P. Further evaluation of an EMG technique for assessment of the deep cervical flexor muscles. Journal of Electromyography and Kinesiology 2004; 16 (6): 621-628. https://doi.org/10.1016/j.jelekin.2005.10.003
  • 42. Vasavada AN, Peterson BW, Delp SL. Three-dimensional spatial tuning of neck muscle activation in humans. Experimental Brain Research 2002; 147 (4): 437-448. https://doi.org/10.1007/ s00221-002-1275-6
  • 43. Bressel E, Dolny D, Gibbons M. Trunk muscle activity during exercises performed on land and in water. Medicine & Science in Sports & Exercise 2011; 43 (10): 1927-1932. https://doi. org/10.1249/MSS.0b013e318219dae7
  • 44. Jull G, Falla D, Vicenzino B, Hodges PW. The effect of therapeutic exercise on activation of the deep cervical flexor muscles in people with chronic neck pain. Manual Therapy 2009; 14 (6): 696-701. https://doi.org/10.1016/j.math.2009.05.004
  • 45. Di Giulio I, Maganaris CN, Baltzopoulos V, Loram ID. The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. The Journal of Physiology 2009; 587 (10): 2399-2416. https:// doi.org/10.1113/jphysiol.2009.168690
  • 46. Fitzpatrick R, Burke, D, Gandevia SC. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. The Journal of Neurophysiology 1996; 76 (6): 3994-4008. https://doi.org/10.1152/ jn.1996.76.6.3994
  • 47. Islam MA, Pulverenti TS, Knikou M. Neuronal actions of transspinal stimulation on locomotor networks and reflex excitability during walking in humans with and without spinal cord injury. Frontiers in Human Neuroscience 2021; 15: 620414. https://doi.org/10.3389/fnhum.2021.620414
  • 48. Garland SJ, Gray VL, Knorr S. Muscle activation patterns and postural control following stroke. Motor Control 2009; 13 (4): 387-411. https://doi.org/10.1123/mcj.13.4.387
  • 49. Horak FB, Nutt JG, Nashner LM. Postural inflexibility in parkinsonian subjects. The Journal of the Neurological Sciences 1992; 111 (1): 46-58. https://doi.org/10.1016/0022- 510X(92)90111-W
  • 50. Mochizuki G, Ivanova TD, Garland SJ. Postural muscle activity during bilateral and unilateral arm movements at different speeds. Experimental Brain Research 2004; 155: 352-361. https://doi.org/10.1007/s00221-003-1732-x
  • 51. Loram ID, Maganaris CN, Lakie M. The passive, human calf muscles in relation to standing: the short range stiffness lies in the contractile component. The Journal of Physiology 2007; 584 (2): 677-692. https://doi.org/10.1113/jphysiol.2007.140053
  • 52. Mohapatra S, Krishnan V, Aruin AS. Postural control in response to an external perturbation: effect of altered proprioceptive information. Experimental Brain Research 2012; 217 (2): 197- 208. https://doi.org/10.1007/s00221-011-2986-3
  • 53. Gage JR, Schwartz MH, Koop SE, Novacheck TF. The Identification and Treatment of Gait Problems in Cerebral Palsy. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons; 2009.
  • 54. Wren TA, Elihu KJ, Mansour S, Rethlefsen SA, Ryan DD et al. Differences in implementation of gait analysis recommendations based on affiliation with a gait laboratory. Gait & Posture 2013; 37 (2): 206-209. https://doi.org/10.1016/j.gaitpost.2012.07.008
  • 55. Engström P, Bartonek Å, Tedroff K, Orefelt C, Haglund-Åkerlind Y et al. Botulinum toxin A does not improve the results of cast treatment for idiopathic toe-walking: a randomized controlled trial. The Journal of Bone and Joint Surgery 2013; 95 (5): 400- 407. https://doi.org/10.2106/JBJS.L.00889
  • 56. Wilding RJ, Lewin A. The determination of optimal human jaw movements based on their association with chewing performance. Archives of Oral Biology 1994; 39 (4): 333-343. https://doi.org/10.1016/0003-9969(94)90125-2
  • 57. Burden A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology 2010; 20 (6): 1023-1035. https://doi.org/10.1016/j. jelekin.2010.07.004
  • 58. Ivanenko YP, Poppele RE, Lacquaniti F. Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. Journal of Neurophysiology 2006; 95 (2): 602-618. https://doi.org/10.1152/jn.00767.2005
  • 59. Imagawa H, Hagio S, Kouzaki M. Synergistic co-activation in multi-directional postural control in humans. Journal of Electromyography and Kinesiology 2013; 23 (2): 430-437. https://doi.org/10.1016/j.jelekin.2012.11.003
  • 60. Torres-Oviedo G, Ting LH. Muscle synergies characterizing human postural responses. Journal of Neurophysiology 2007; 98 (4): 2144-2156. https://doi.org/10.1152/jn.01360.2006
  • 61. Kahveci A, Cengiz BC, Alcan V, Zinnuroglu M, Gürses S. Identification of control strategies in diabetic neuropatic patients versus healthiest through kinematic trajectories. In: Proceedings of the European Orthopaedic Research Society 28th Annual Meeting; İzmir, Türkiye. pp. 343-344.
  • 62. Kendall FP, McCreary EK, Provance P, Rodgers MM, Romani WA. Muscles: Testing and Function with Posture and Pain. 5th ed. Baltimore, MD, USA: Williams & Wilkins; 2005.
  • 63. Lee DD, Seung HS. Learning the parts of objects by non- negative matrix factorization. Nature 1999; 401: 788-791. https://doi.org/10.1038/44565
  • 64. Ivanenko YP, Dominici N, Cappellini G, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F. Changes in the spinal segmental motor output for stepping during development from infant to adult. Journal of Neurophysiology 2013; 33 (7): 3025-3036. https://doi.org/10.1523/JNEUROSCI.2722-12.2013
  • 65. Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. Journal of Neurophysiology 2006; 95 (6): 3426-3437. https://doi. org/10.1152/jn.00081.2006
  • 66. Saltiel P, Rossignol S. Critical points in the forelimb fictive locomotor cycle and motor coordination: effects of phasic retractions and protractions of the shoulder in the cat. Journal of Neurophysiology 2004; 92 (3): 1342-1356. https://doi. org/10.1152/jn.00564.2003
  • 67. Lacquaniti F, Ivanenko YP, Zago M. Development of human locomotion. Current Opinion in Neurobiology 2012; 22 (5): 822-828. https://doi.org/10.1016/j.conb.2012.03.012
  • 68. Dogan-Aslan M, Nakipoglu-Yugan GF, Dogan A, Karabay I, Ozgirgin N. The effect of electromyographic biofeedback treatment in improving upper extremity functioning of patients with hemiplegic stroke. Journal of Stroke and Cerebrovascular Diseases 2012; 21 (3): 187-192. https://doi.org/10.1016/j. jstrokecerebrovasdis.2010.06.006
  • 69. Dursun E, Dursun N, Alican D. Effects of biofeedback treatment on gait in children with cerebral palsy. Disability and Rehabilitation 2004; 26 (2): 116-120. https://doi.org/10.1080/0 9638280310001629679
  • 70. Govil K, Noohu MM. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury. NeuroRehabilitation 2013; 33 (1): 147-152. https://doi.org/10.3233/NRE-130939
  • 71. Ma C, Szeto GP, Yan T, Wu S, Lin C. Comparing biofeedback with active exercise and passive treatment for the management of work-related neck and shoulder pain: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation 2011; 92 (6): 849-859. https://doi.org/10.1016/j.apmr.2010.12.037
  • 72. Herderschee R, Hay-Smith EJC, Herbison GP, Roovers JP, Heineman MJ. Feedback or biofeedback to augment pelvic floor muscle training for urinary incontinence in women. The Cochrane Database of Systematic Reviews 2011; 7: CD009252. https://doi.org/10.1002/14651858.CD009252
  • 73. Crider AB, Glaros AG, Gevirtz RN. Efficacy of biofeedback- based treatments for temporomandibular disorders. Applied Psychophysiology and Biofeedback 2005; 30 (4): 333-345.https:// doi.org/0.1007/s10484-005-8420-5
  • 74. Crary MA, Mann GDC, Groher ME, Helseth E. Functional benefits of dysphagia therapy using adjunctive sEMG biofeedback. Dysphagia 2004; 19 (3): 160-164. https://doi. org/10.1007/s00455-004-0003-8
  • 75. Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. Journal of NeuroEngineering and Rehabilitation 2006; 3: 11. https://doi.org/10.1186/1743-0003-3- 11
  • 76. MerlettiR,HolobarA,FarinaD.Analysisofmotorunitswithhigh- density surface electromyography. Journal of Electromyography and Kinesiology 2008; 18 (6): 879-890. https://doi.org/10.1016/j. jelekin.2008.09.002
  • 77. Lateva ZC, McGill KC. Estimating motor-unit architectural properties by analyzing motor-unit action potential morphology. Clinical Neurophysiology 2001; 112 (1): 127-135. https://doi. org/10.1016/S1388-2457(00)00495-8
  • 78. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews 2001; 81 (4): 1725-1789. https:// doi.org/10.1152/physrev.2001.81.4.1725
  • 79. Watanabe K, Gazzoni M, Holobar A, Miyamoto T, Fukuda K et al. Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle & Nerve 2013; 48 (5): 806-813. https://doi.org/10.1002/mus.23828
  • 80. Farina D, Merletti R. A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Transactions on Biomedical Engineering 2001; 48 (6): 637-646. https://doi. org/10.1109/10.923782
  • 81. Merletti R, Roy SH, Kupa E, Roatta S, Granata A. Modeling of surface myoelectric signals. II: model-based signal interpretation. IEEE Transactions on Biomedical Engineering 1999; 46 (7): 821- 829. https://doi.org/10.1109/10.771191
  • 82. Dimitrov GV, Disselhorst-Klug C, Dimitrova NA, Schulte E, Rau G. Simulation analysis of the ability of different types of multi- electrodes to increase selectivity of detection and to reduce cross- talk. Journal of Electromyography and Kinesiology 2003; 13 (2): 125-138. https://doi.org/10.1016/S1050-6411(02)00095-0
  • 83. Manal K, Gravare-Silbernagel K, Buchanan TS. A real-time EMG-driven musculoskeletal model of the ankle. Multibody System Dynamics 2011; 28: 169-180. https://doi.org/10.1007/ s11044-011-9285-4
  • 84. Besier TF, Fredericson M, Gold GE, Beaupré GS, Delp SL. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. Journal of Biomechanics 2009; 42 (7): 898-905.https://doi.org/10.1016/j.jbiomech.2009.01.032
  • 85. Shao Q, Bassett DN, Manal K, Buchanan TS. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Computers in Biology and Medicine 2009; 39 (12): 1083-1088. https://doi.org/10.1016/j.compbiomed.2009.09.002
  • 86. Sartori M, Gizzi L, Lloyd DG, Farina D. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Frontiers in Computational Neuroscience 2013; 7: 79. https://doi.org/10.3389/ fncom.2013.00079
  • 87. Sartori F, Reggiani M, Farina D, Lloyd DG. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One 2012; 7 (12): e52618. https://doi. org/10.1371/journal.pone.0052618
  • 88. van Dieen JH, De Looze MP, Hermans V. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics 2001; 44 (7): 739-750.https://doi. org/10.1080/00140130120297
  • 89. Westgaard RH. Work-related musculoskeletal complaints: some ergonomics challenges upon the start of a new century. Applied Ergonomics 2000; 31 (6): 569-580. https://doi.org/10.1016/ S0003-6870(00)00036-3
  • 90. Lazaro P, Parody E, Garcia-Vicuna R, Gabriele G, Jover JA et al. Cost of temporary work disability due to musculoskeletal diseases in Spain. Reumatología Clínica 2014; 10 (2): 109-112. https://doi.org/10.1016/j.reumae.2013.12.016
  • 91. Gregory WT, Lou JS, Simmons K, Clark AL. Quantitative anal sphincter electromyography in primiparous women with anal incontinence. The American Journal of Obstetrics & Gynecology 2008; 198 (5): 550. https://doi.org/10.1016/j. ajog.2008.01.053
  • 92. Merletti R, Bottin A, Cescon C, Farina D, Gazzoni M et al. Multichannel surface EMG for the non-invasive assessment of the anal sphincter muscle. Digestion 2004; 69 (2): 112-122. https://doi.org/10.1159/000077877
  • 93. Hug F, Turpin NA, Guevel A, Dorel S. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? Journal of Applied Physiology 2010; 108 (3): 1727-1736. https://doi.org/10.1152/japplphysiol.01305.2009
  • 94. Tomasoni E, Romanazzi M, Boccia G, Rainoldi A. sEMG assessment of upper limb muscles during dynamical contractions in different instability conditions. Sport Sciences for Health 2012; 8: 56-57. https://dx.doi.org/10.1007/s11332- 012-0030-z
  • 95. Dorel S, Drouet JM, Couturier A, Champoux Y, Hug F. Changes of pedaling technique and muscle coordination during an exhaustive exercise. Medicine & Science in Sports & Exercise 2009; 41 (6): 1277-1286. https://doi.org/10.1249/- MSS.0b013e31819825f8
  • 96. Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology 2006; 16 (6): 541-548. https://doi.org/10.1016/j.jelekin.2006.08.006
  • 97. Popović DB, Sinkjær T. Neuromodulation of lower limb monoparesis: functional electrical therapy of walking. Acta Neurochirurgica Supplement 2007; 97 (1): 387-393. https://doi. org/10.1007/978-3-211-33079-1_51
  • 98. Sartori M, Reggiani M, Pagello E, Lloyd DG. Modeling the human knee for assistive technologies. IEEE Transaction Biomedical Engineering 2012; 59 (9): 2642-2649. https://doi. org/10.1109/TBME.2012.2208746
  • 99. Cerone GL, Botter A, Gazzoni M. A modular, smart, and wearable system for high density sEMG detection. IEEE Transactions on Biomedical Engineering 2019; 66 (12): 3371- 3380. https://doi.org/10.1109/TBME.2019.2904398
APA Alcan V, ZINNUROGLU M (2023). Current developments in surface electromyography. , 1019 - 1031. 10.55730/1300-0144.5667
Chicago Alcan Veysel,ZINNUROGLU MURAT Current developments in surface electromyography. (2023): 1019 - 1031. 10.55730/1300-0144.5667
MLA Alcan Veysel,ZINNUROGLU MURAT Current developments in surface electromyography. , 2023, ss.1019 - 1031. 10.55730/1300-0144.5667
AMA Alcan V,ZINNUROGLU M Current developments in surface electromyography. . 2023; 1019 - 1031. 10.55730/1300-0144.5667
Vancouver Alcan V,ZINNUROGLU M Current developments in surface electromyography. . 2023; 1019 - 1031. 10.55730/1300-0144.5667
IEEE Alcan V,ZINNUROGLU M "Current developments in surface electromyography." , ss.1019 - 1031, 2023. 10.55730/1300-0144.5667
ISNAD Alcan, Veysel - ZINNUROGLU, MURAT. "Current developments in surface electromyography". (2023), 1019-1031. https://doi.org/10.55730/1300-0144.5667
APA Alcan V, ZINNUROGLU M (2023). Current developments in surface electromyography. Turkish Journal of Medical Sciences, 53(5), 1019 - 1031. 10.55730/1300-0144.5667
Chicago Alcan Veysel,ZINNUROGLU MURAT Current developments in surface electromyography. Turkish Journal of Medical Sciences 53, no.5 (2023): 1019 - 1031. 10.55730/1300-0144.5667
MLA Alcan Veysel,ZINNUROGLU MURAT Current developments in surface electromyography. Turkish Journal of Medical Sciences, vol.53, no.5, 2023, ss.1019 - 1031. 10.55730/1300-0144.5667
AMA Alcan V,ZINNUROGLU M Current developments in surface electromyography. Turkish Journal of Medical Sciences. 2023; 53(5): 1019 - 1031. 10.55730/1300-0144.5667
Vancouver Alcan V,ZINNUROGLU M Current developments in surface electromyography. Turkish Journal of Medical Sciences. 2023; 53(5): 1019 - 1031. 10.55730/1300-0144.5667
IEEE Alcan V,ZINNUROGLU M "Current developments in surface electromyography." Turkish Journal of Medical Sciences, 53, ss.1019 - 1031, 2023. 10.55730/1300-0144.5667
ISNAD Alcan, Veysel - ZINNUROGLU, MURAT. "Current developments in surface electromyography". Turkish Journal of Medical Sciences 53/5 (2023), 1019-1031. https://doi.org/10.55730/1300-0144.5667