Yıl: 2023 Cilt: 30 Sayı: 11 Sayfa Aralığı: 14525 - 1458 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2023.09.264 İndeks Tarihi: 01-12-2023

Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion

Öz:
Aim: This study investigates the protective effects of Dinoprost against Ischemia/ Reperfusion (I/R) damage in the rat ovary, focusing on the expression of cyclooxygenase-2 (COX-2), Interleukin-1β (IL1β), and Tumor Necrosis Factor-α (TNF-α). Additionally, the impact of Dinoprost on reducing hemorrhage in the ovarian tissue is evaluated. Materials and Methods: A total of 24 rats were randomly divided into four groups: Control, Ischemia (Isch), I/R, and Dino+I/R. Ischemia was induced by clamping the ovarian blood supply, followed by reperfusion. Dinoprost was administered before reperfusion in the Dino+I/R group. COX-2, IL1β, and TNF-α expression levels were assessed through histochemical and immunochemical analyses. Hemorrhage in the ovarian tissue was also examined. Results: The Dino+I/R group exhibited a significant decrease in COX-2 expression compared to the Isch and I/R groups (p<0.05). However, there were no significant changes in the expression levels of IL1β and TNF-α among the groups. Notably, the Dino+I/R group showed significantly reduced hemorrhage compared to the Isch and I/R groups (p<0.05). Conclusion: Dinoprost demonstrated a protective effect against I/R damage in the rat ovary, primarily by attenuating COX-2 expression and reducing hemorrhage. These findings suggest the potential therapeutic utility of Dinoprost in mitigating ovarian I/R injury, emphasizing its role in preserving ovarian function and fertility.
Anahtar Kelime: Dinoprost Ischemia/reperfusion injury Rat ovary Tissue damage

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kalogeris T, Baines C, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229– 318.
  • 2. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35.
  • 3. Kartal B, Bozkurt MF, Alimoğullari E, Saçık U. The protective effect of erythropoietin on ischemia- reperfusion injury caused by ovarian torsion-detorsion in the experimental rat model. J Histotechnol. 2023;46(2):57-64.
  • 4. Cure MC, Cure E, Kalkan Y, et al. The Protective Effect of Adalimumab on Renal Injury in a Model of Abdominal Aorta Cross-Clamping. Adv Clin Exp Med. 2016;25(2):219-26.
  • 5. Maehara T, Fujimori K. Contribution of FP receptors in M1 macrophage polarization via IL-10-regulated nuclear translocation of NF-κB p65. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(5):158654.
  • 6. Westman M, Korotkova M, af Klint E, et al. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium, Arthritis Rheum. 2004;50(6):1774-80.
  • 7. Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 2017;36(1):5-24.
  • 8. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989;259(2):315-24.
  • 9. Berenbaum F. Pro-inflammatory cytokines, prostaglandins, and the chondrocyte: mechanisms of intracellular activation. Joint Bone Spine. 2000;67(6):561-4.
  • 10. Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov. 2014;9(3):255-67.
  • 11. Jordan F, Quinn TJ, McGuinness B, et al. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia. Cochrane Database Syst Rev. 2020;4(4):CD011459.
  • 12. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986-1000.
  • 13. Sugimoto Y, Inazumi T, Tsuchiya S. Roles of prostaglandin receptors in female reproduction. J Biochem. 2015;157(2):73-80.
  • 14. Bie Q, Dong H, Jin C, et al. 15d-PGJ2 is a new hope for controlling tumor growth. Am J Transl Res. 2018;10(3):648-58.
  • 15. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–82.
  • 16. Hase T, Yoshimura R, Matsuyama M, et al. Cyclooxygenase1 and -2 in human testicular tumours. Eur J Cancer. 2003;39(14):2043-9.
  • 17. Vuolteenaho K, Moilanen T, Moilanen E. Non-steroidal antiinflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol. 2008;102(1):10-14.
  • 18. Matsuyama M, Nakatani T, Hase T, et al. The expression of cyclooxygenases and lipoxygenases in renal ischemia-reperfusion injury. Transplant Proc. 2004;36(7):1939-42.
  • 19. Hamada T, Tsuchihashi S, Avanesyan A, et al. Cyclooxygenase2 deficiency enhances Th2 immune responses and impairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol. 2008;180(3):1843-53.
  • 20. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2.Science. 2005;310(5756):1966-70.
  • 21. Thyagarajan A, Saylae J, Sahu RP. Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-Rindependent signaling pathway. Oncotarget. 2017;8(30):49959- 72.
  • 22. Wang YJ, Xie XL, Liu HQ, et al. Prostaglandin F2α synthase promotes oxaliplatin resistance in colorectal cancer through prostaglandin F2α-dependent and F2α-independent mechanism. World J Gastroenterol. 2023;29(39):5452-5470.
  • 23. Qualtrough D, Kaidi A, Chell S, et al. Prostaglandin F(2alpha) stimulates motility and invasion in colorectal tumor cells. Int J Cancer. 2007;121(4):734-40.
  • 24. Sales KJ, List T, Boddy SC, et al. A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res. 2005;65(17):7707-16.
  • 25. Wallace AE, Sales KJ, Catalano RD, et al. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Res. 2009;69(14):5726-33.
  • 26. Yu Y, Lucitt MB, Stubbe J, et al. Prostaglandin F2alpha elevates blood pressure and promotes atherosclerosis. Proc Natl Acad Sci U S A. 2009;106(19):7985-90.
  • 27. Basu S, Whiteman M, Mattey DL, Halliwell B. Raised levels of F(2)-isoprostanes and prostaglandin F(2alpha) in different rheumatic diseases. Ann Rheum Dis. 2001;60(6):627-31.
  • 28. Helmersson J, Vessby B, Larsson A, Basu S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 2004;109(14):1729-34.
  • 29. Basu S, Larsson A, Vessby J, et al. Type 1 diabetes is associated with increased cyclooxygenase- and cytokine-mediated inflammation. Diabetes Care. 2005;28(6):1371-5.
  • 30. Nakagawa T, Kosugi T, Haneda M, et al. Abnormal angiogenesis in diabetic nephropathy. Diabetes. 2009;58(7):1471-8.
  • 31. Zhao Y, Lei Y, Ning H, et al. PGF2α facilitates pathological retinal angiogenesis by modulating endothelial FOSdriven ELR+ CXC chemokine expression. EMBO Mol Med. 2023;15(1):e16373.
  • 32. Topdagi Yilmaz EP, Tanyeli A, Ekinci Akdemir FN, et al. The therapeutic effect of naringin on ovarian and lung damages created by adnexal torsion/detorsion: A biochemical study. Annals of Medical Research.2020;27(9):2438-42
APA KARAKUŞ S, özkaraca m (2023). Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. , 14525 - 1458. 10.5455/annalsmedres.2023.09.264
Chicago KARAKUŞ Savas,özkaraca mustafa Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. (2023): 14525 - 1458. 10.5455/annalsmedres.2023.09.264
MLA KARAKUŞ Savas,özkaraca mustafa Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. , 2023, ss.14525 - 1458. 10.5455/annalsmedres.2023.09.264
AMA KARAKUŞ S,özkaraca m Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. . 2023; 14525 - 1458. 10.5455/annalsmedres.2023.09.264
Vancouver KARAKUŞ S,özkaraca m Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. . 2023; 14525 - 1458. 10.5455/annalsmedres.2023.09.264
IEEE KARAKUŞ S,özkaraca m "Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion." , ss.14525 - 1458, 2023. 10.5455/annalsmedres.2023.09.264
ISNAD KARAKUŞ, Savas - özkaraca, mustafa. "Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion". (2023), 14525-1458. https://doi.org/10.5455/annalsmedres.2023.09.264
APA KARAKUŞ S, özkaraca m (2023). Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. Annals of Medical Research, 30(11), 14525 - 1458. 10.5455/annalsmedres.2023.09.264
Chicago KARAKUŞ Savas,özkaraca mustafa Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. Annals of Medical Research 30, no.11 (2023): 14525 - 1458. 10.5455/annalsmedres.2023.09.264
MLA KARAKUŞ Savas,özkaraca mustafa Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. Annals of Medical Research, vol.30, no.11, 2023, ss.14525 - 1458. 10.5455/annalsmedres.2023.09.264
AMA KARAKUŞ S,özkaraca m Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. Annals of Medical Research. 2023; 30(11): 14525 - 1458. 10.5455/annalsmedres.2023.09.264
Vancouver KARAKUŞ S,özkaraca m Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion. Annals of Medical Research. 2023; 30(11): 14525 - 1458. 10.5455/annalsmedres.2023.09.264
IEEE KARAKUŞ S,özkaraca m "Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion." Annals of Medical Research, 30, ss.14525 - 1458, 2023. 10.5455/annalsmedres.2023.09.264
ISNAD KARAKUŞ, Savas - özkaraca, mustafa. "Investigating the protective potential of dinoprost in a rat model of ischemia-reperfusion". Annals of Medical Research 30/11 (2023), 14525-1458. https://doi.org/10.5455/annalsmedres.2023.09.264