Yıl: 2023 Cilt: 30 Sayı: 11 Sayfa Aralığı: 1464 - 1468 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2023.10.290 İndeks Tarihi: 01-12-2023

Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment

Öz:
Aim: Pemetrexed (PMTX) is a multi-targeted anticancer agent that exerts its antifolate effect by disrupting the folate dependent metabolic processes underlying cell proliferation. Kidney toxicity is a common side effect of anticancer agents. Chrysin (Chr) is a powerful antioxidant compound abundant in plant extracts, honey, and bee propolis. The aim of this study is to investigate the effect of the combined use of chrysin, a natural flavonoid, against the possible harmful effects of PMTX on kidney tissue. Materials and Methods: 50 Wistar albino male rats were divided; Control, Sham, PMTX, Chr, PMTX+Chr groups. Sham (1ml corn oil/day), Chr (50mg/kg/day) by oral gavage, PMTX (1mg/kg/week) by i.p., PMTX+Chr (PMTX;1mg/kg/week, Chr;50mg/kg/day) were given at the same time every day. At the end of 4 weeks of the study, kidney tissues and blood were collected. Creatinine (Cr) and blood-urea-nitrogen (BUN) analyzed in serum by ELISA. The malondialdehyde (MDA), superoxide dismutase (SOD) activities and total antioxidant status (TAS), total oxidant status (TOS), OSI also were measured in kidney tissue. Results: Indicators of oxidative stress, MDA was elevated and antioxidant activity was reduced in the PMTX groups compared to Control and Sham groups (p<0.05). In the PMTX+Chr group, MDA, BUN, Cr and TOS were decreased, SOD and TAS was increased compared to PMTX group (p <0.05). Conclusion: Chr exhibited ameliorative effects on PMTX induced nephrotoxicity increasing antioxidant activity and reducing oxidative damage.
Anahtar Kelime: Pemetrexed Chrysin Kidney Oxidative stress Rat

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ekici K, Temelli O, Parlakpinar H, Samdanci E, Polat A, Beytur A, et al. Beneficial effects of aminoguanidine on radiotherapyinduced kidney and testis injury. Andrologia. 2016;48(6):683-92. doi: 10.1111/and.12500.
  • 2. Shih C, Habeck LL, Mendelsohn LG, Chen VJ, Schultz RM. Multiple folate enzyme inhibition: mechanism of a novel pyrrolopyrimidine-based antifolate LY231514 (MTA). Adv Enzyme Regul. 1998;38:135-52. doi: 10.1016/s0065-2571(97)00017- 4.
  • 3. Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, et al. Firstline icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutationpositive lung adenocarcinoma (CONVINCE): a phase 3, openlabel, randomized study. Ann Oncol. 2017;28(10):2443-50. doi: 10.1093/annonc/mdx359.
  • 4. Rossi G, Alama A, Genova C, Rijavec E, Tagliamento M, Biello F, et al. The evolving role of pemetrexed disodium for the treatment of non-small cell lung cancer. Expert opinion on pharmacotherapy. 2018;19(17):1969-76. doi: 10.1080/14656566.2018.1536746.
  • 5. Temel Y, Kucukler S, Yildirim S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(3):325-37. doi: 10.1007/s00210-019- 01741-z.
  • 6. de Rouw N, Piet B, Derijks HJ, van den Heuvel MM, Ter Heine R. Mechanisms, Management and Prevention of Pemetrexed-Related Toxicity. Drug Saf. 2021;44(12):1271-81. doi: 10.1007/s40264-021-01135-2.
  • 7. Dumoulin DW, Visser S, Cornelissen R, van Gelder T, Vansteenkiste J, von der Thusen J, et al. Renal Toxicity From Pemetrexed and Pembrolizumab in the Era of Combination Therapy in Patients With Metastatic Nonsquamous Cell NSCLC. J Thorac Oncol. 2020;15(9):1472-83. doi: 10.1016/j.jtho.2020.04.021.
  • 8. de Rouw N, Boosman RJ, van de Bruinhorst H, Biesma B, van den Heuvel MM, Burger DM, et al. Cumulative pemetrexed dose increases the risk of nephrotoxicity. Lung Cancer. 2020;146:30-5. doi: 10.1016/j.lungcan.2020.05.022.
  • 9. Awad MM, Gadgeel SM, Borghaei H, Patnaik A, Yang JC, Powell SF, et al. Long-Term Overall Survival From KEYNOTE021 Cohort G: Pemetrexed and Carboplatin With or Without Pembrolizumab as First-Line Therapy for Advanced Nonsquamous NSCLC. J Thorac Oncol. 2021;16(1):162-8. doi: 10.1016/j.jtho.2020.09.015.
  • 10. Woźniak M, Mrówczyńska L, Kwaśniewska-Sip P, Waśkiewicz A, Nowak P, Ratajczak IJM. Effect of the solvent on propolis phenolic profile and its antifungal, antioxidant, and in vitro cytoprotective activity in human erythrocytes under oxidative stress. 2020;25(18):4266.
  • 11. Lopes AP, Galuch MB, Petenuci ME, Oliveira JH, Canesin EA, Schneider VVA, et al. Quantification of phenolic compounds in ripe and unripe bitter melons (Momordica charantia) and evaluation of the distribution of phenolic compounds in different parts of the fruit by UPLC–MS/MS. 2020;74(8):2613-25.
  • 12. Sharma P, Kumari A, Gulati A, Krishnamurthy S, Hemalatha SJNn. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. 2019;22(8):569-77.
  • 13. Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, et al. Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci. 2019;228:285-94. doi: 10.1016/j.lfs.2019.05.007.
  • 14. Pingili RB, Pawar AK, Challa SR, Kodali T, Koppula S, Toleti V. A comprehensive review on hepatoprotective and nephroprotective activities of chrysin against various drugs and toxic agents. Chem Biol Interact. 2019;308:51-60. doi: 10.1016/j.cbi.2019.05.010.
  • 15. Rashid S, Ali N, Nafees S, Ahmad ST, Arjumand W, Hasan SK, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 2013;23(5):337-45. doi: 10.3109/15376516.2012.759306.
  • 16. Mishra A, Mishra PS, Bandopadhyay R, Khurana N, Angelopoulou E, Paudel YN, et al. Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules. 2021;26(21). doi: 10.3390/molecules26216456.
  • 17. Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin Improves Glucose and Lipid Metabolism Disorders by Regulating the AMPK/PI3K/AKT Signaling Pathway in Insulin-Resistant HepG2 Cells and HFD/STZ-Induced C57BL/6J Mice. J Agric Food Chem. 2021;69(20):5618-27. doi: 10.1021/acs.jafc.1c01109.
  • 18. Baykalir BG, Arslan AS, Mutlu SI, Parlak Ak T, Seven I, Seven PT, et al. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int J Vitam Nutr Res. 2021;91(5-6):427-38. doi: 10.1024/0300- 9831/a000653.
  • 19. Zhandi M, Ansari M, Roknabadi P, Zare Shahneh A, Sharafi M. Orally administered Chrysin improves post-thawed sperm quality and fertility of rooster. Reprod Domest Anim. 2017;52(6):1004-10. doi: 10.1111/rda.13014.
  • 20. de Azevedo Queiroz IO, Machado T, Alves CC, Vasques AMV, Cury MTS, Vasconcelos BC, et al. Tracing the toxic ions of an endodontic tricalcium silicate-based sealer in local tissues and body organs. J Trace Elem Med Biol. 2021;68:126856. doi: 10.1016/j.jtemb.2021.126856.
  • 21. Ji S, Ma Y, Xing X, Ge B, Li Y, Xu X, et al. Suppression of CD13 Enhances the Cytotoxic Effect of Chemotherapeutic Drugs in Hepatocellular Carcinoma Cells. Front Pharmacol. 2021;12:660377. doi: 10.3389/fphar.2021.660377.
  • 22. Boosman RJ, Dorlo TPC, de Rouw N, Burgers JA, Dingemans AC, van den Heuvel MM, et al. Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment. Int J Cancer. 2021;149(8):1576-84. doi: 10.1002/ijc.33721.
  • 23. Tanbek K, Ozerol E, Gul M. Effects of Alpha Lipoic Acid Learning Behaviors and Histological Examinationon Brain Tissue on Diabetic rats. Acta Physiologica. 2017;221:110-.
  • 24. Çolak C, PARLAKPINAR HJJoTOMC. Hayvan deneyleri: in vivo denemelerin bildirimi: ARRIVE Kılavuzu-Derleme. 2012;19(2):128-31.
  • 25. Skalska S, Kucera P, Goldenberg Z, Stefek M, Kyselova Z, Jariabka P, et al. Neuropathy in a rat model of mild diabetes induced by multiple low doses of streptozotocin: effects of the antioxidant stobadine in comparison with a high-dose alpha-lipoic acid treatment. Gen Physiol Biophys. 2010;29(1):50-8.
  • 26. Pestieau SR, Stuart OA, Sugarbaker PH. Multi-targeted antifolate (MTA): pharmacokinetics of intraperitoneal administration in a rat model. Eur J Surg Oncol. 2000;26(7):696-700. doi: 10.1053/ejso.2000.0983.
  • 27. Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gulcin I. Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A MultiBiomarker Approach. Sci Pharm. 2017;85(1). doi: 10.3390/scipharm85010004.
  • 28. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4- hydroxynonenal. Methods Enzymol. 1990;186:407-21. doi: 10.1016/0076-6879(90)86134-h.
  • 29. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497-500.
  • 30. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277-85. doi: 10.1016/j.clinbiochem.2003.11.015.
  • 31. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical biochemistry. 2004;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014.
  • 32. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11. doi: 10.1016/j.clinbiochem.2005.08.008.
  • 33. Huang G, Zhang Q, Xu C, Chen L, Zhang H. Mechanism of kidney injury induced by cisplatin. Toxicol Res (Camb). 2022;11(3):385-90. doi: 10.1093/toxres/tfac019.
  • 34. Vardi N, Parlakpinar H, Ates B, Cetin A, Otlu A. The protective effects of Prunus armeniaca L (apricot) against methotrexateinduced oxidative damage and apoptosis in rat kidney. J Physiol Biochem. 2013;69(3):371-81. doi: 10.1007/s13105-012-0219-2.
  • 35. Mentese A, Alemdar NT, Livaoglu A, Ayazoglu Demir E, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. J Obstet Gynaecol. 2022:1-7. doi: 10.1080/01443615.2022.2130201.
  • 36. Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective Effects of Chrysin Against Drugs and Toxic Agents. Dose Response. 2017;15(2):1559325817711782. doi: 10.1177/1559325817711782.
APA Tanbek K, Kose E (2023). Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. , 1464 - 1468. 10.5455/annalsmedres.2023.10.290
Chicago Tanbek Kevser,Kose Evren Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. (2023): 1464 - 1468. 10.5455/annalsmedres.2023.10.290
MLA Tanbek Kevser,Kose Evren Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. , 2023, ss.1464 - 1468. 10.5455/annalsmedres.2023.10.290
AMA Tanbek K,Kose E Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. . 2023; 1464 - 1468. 10.5455/annalsmedres.2023.10.290
Vancouver Tanbek K,Kose E Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. . 2023; 1464 - 1468. 10.5455/annalsmedres.2023.10.290
IEEE Tanbek K,Kose E "Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment." , ss.1464 - 1468, 2023. 10.5455/annalsmedres.2023.10.290
ISNAD Tanbek, Kevser - Kose, Evren. "Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment". (2023), 1464-1468. https://doi.org/10.5455/annalsmedres.2023.10.290
APA Tanbek K, Kose E (2023). Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. Annals of Medical Research, 30(11), 1464 - 1468. 10.5455/annalsmedres.2023.10.290
Chicago Tanbek Kevser,Kose Evren Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. Annals of Medical Research 30, no.11 (2023): 1464 - 1468. 10.5455/annalsmedres.2023.10.290
MLA Tanbek Kevser,Kose Evren Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. Annals of Medical Research, vol.30, no.11, 2023, ss.1464 - 1468. 10.5455/annalsmedres.2023.10.290
AMA Tanbek K,Kose E Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. Annals of Medical Research. 2023; 30(11): 1464 - 1468. 10.5455/annalsmedres.2023.10.290
Vancouver Tanbek K,Kose E Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment. Annals of Medical Research. 2023; 30(11): 1464 - 1468. 10.5455/annalsmedres.2023.10.290
IEEE Tanbek K,Kose E "Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment." Annals of Medical Research, 30, ss.1464 - 1468, 2023. 10.5455/annalsmedres.2023.10.290
ISNAD Tanbek, Kevser - Kose, Evren. "Chrysin protects against kidney tissue oxidative damage caused by pemetrexed used in cancer treatment". Annals of Medical Research 30/11 (2023), 1464-1468. https://doi.org/10.5455/annalsmedres.2023.10.290