Yıl: 2023 Cilt: 48 Sayı: 3 Sayfa Aralığı: 443 - 458 Metin Dili: İngilizce DOI: 10.55262/fabadeczacilik.1338677 İndeks Tarihi: 01-12-2023

Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma

Öz:
Melanoma is classified as one of the most common cancers with an increasing incidence rate and the conventional treatment options that come with undesirable effects decrease the life quality of patients. Herein, as an alternative therapy option for systemic administration, Carbopol-based nanoemulgel formulations for local delivery were designed. Topical drug delivery systems containing Oxaliplatin, a cisplatin derivative anticancer drug used in the treatment of colorectal cancers, were evaluated for their potential for melanoma treatment. Nanoemulgel formulations with particle size under 300 nm were prepared and characterized in terms of droplet size, zeta potential and liquid crystal formation. The viscosity, as a critical attribute for topical drug delivery systems, was also evaluated, and pseudoplastic behavior of these novel drug delivery systems were confirmed. The controlled drug release pattern was shown with in vitro drug release studies with a significant difference from oxaliplatin when applied in solution. In vitro cell viability evaluation with L929 mouse fibroblast cell line confirmed the biocompatibility of prepared formulations, and the anticancer effect of novel nanoemulgel formulations were presented in B16-F10 mouse melanoma cell line. In conclusion, the anticancer potential of Oxaliplatin nanoemulgels were shown in vitro as a therapy option for melanoma, and the advantages of emulsion and gel-based drug delivery systems were combined in a nanotechnology platform for effective and patient-friendly application of an anticancer therapy for melanoma.
Anahtar Kelime: Nanoemulsion nanoemulgel melanoma cancer drug delivery systems

Yeni Nanoemüljel Formülasyonlarının Melanomada Antikanser Potansiyeli

Öz:
Melanoma görülme sıklığı giderek artan kanser türleri arasında yer almakta ve istenmeyen etkilerle gelen konvansiyonel tedavi seçenekleri hastaların yaşam kalitelerini düşürmektedir. Bu çalışmada, sistemik uygulama için alternatif bir tedavi seçeneği olarak, lokal uygulanan Carbopol bazlı nanoemüljel formülasyonları tasarlanmıştır. Kolorektal kanserlerin tedavisinde kullanılan, sisplatin türevi bir antikanser ilaç olan Oksaliplatin içeren topikal ilaç taşıyıcı sistemlerin melanoma tedavisindeki potansiyeli değerlendirilmiştir. Çalışma sonunda partikül boyutu 300 nm’nin altında olan nanoemüljel formülasyonları elde edilmiş ve formülasyonların damlacık boyutu, zeta potansiyeli ve sıvı kristal oluşumu değerlendirilmiştir. Topikal ilaç taşıyıcı sistemler için kritik bir özellik olarak viskozite değerlendirmesi yürütülmüş ve söz konusu yeni ilaç taşıyıcı sistemlerin psödoplastik davranışı gösterilmiştir. In vitro ilaç salım çalışmaları, hazırlanan formülasyonların çözelti halinde uygulanan oksaliplatine kıyasla önemli bir farkla kontrollü ilaç salım davranışı gösterdiğini doğrulamıştır. Hazırlanan formülasyonların biyouyumluluğu L929 fare fibroblast hücre hattı ile gerçekleştirilen in vitro hücre canlılığı değerlendirmesi ile gösterilmiş ve nanoemülgel formülasyonlarının antikanser etkisi, B16-F10 fare melanoma hücre hattında doğrulanmıştır. Sonuç olarak bu çalışmada melanoma için bir tedavi seçeneği olarak Oksaliplatin nanoemüljellerin in vitro antikanser potansiyeli gösterilmiştir ve melanoma tedavisi için emülsiyon ve jel bazlı ilaç taşıyıcı sistemlerin üstünlükleri nanoteknoloji temeli bir yaklaşımla kombine halde hastaya sunularak etkili ve hasta uyuncunu artıracak bir uygulama sunulmuştur.
Anahtar Kelime: Nanoemülsiyon nanoemüljel melanoma kanser ilaç taşıyıcı sistemler

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alam, M., Rizwanullah, M., Mir, S.R., Amin, S. (2023). Promising prospects of lipid-based topical nano- carriers for the treatment of psoriasis. OpenNano, 10, 100123. doi: 10.1016/j.onano.2023.100123
  • Alcindor, T., & Beauger, N. (2011). Oxaliplatin: a re- view in the era of molecularly targeted therapy. Curr Oncol, 18(1), 18-25. doi:10.3747/co.v18i1.708
  • Azeran N. S.B., Zazali N.D.B., Timur S.S., Özdoğan A.I., Ekizoğlu M., Sheshala R., Dua K., Sahu P.S., Şenel, S.(2017). Moxifloxacin loaded chitosan gel formulations for the treatment of periodontal dis- eases J. Polym. Mater., 34(1), 157-170
  • Binder, L., Mazal, J., Petz, R., Klang, V., & Valenta, C. (2019). The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Res Technol, 25(5), 725-734. doi:10.1111/srt.12709
  • Chakraborty, S., Shukla, D., Jain, A., Mishra, B., & Singh, S. (2009). Assessment of solubiliza- tion characteristics of different surfactants for carvedilol phosphate as a function of pH. J Col - loid Interface Sci, 335(2), 242-249. doi:10.1016/j. jcis.2009.03.047
  • Chen, C. H., Weng, T. H., Chuang, C. H., Huang, K. Y., Huang, S. C., Chen, P. R., . . . Liao, K. W. (2023). Transdermal nanolipoplex simultaneously inhibits subcutaneous melanoma growth and sup- presses systemically metastatic melanoma by acti- vating host immunity. Nanomedicine, 47, 102628. doi:10.1016/j.nano.2022.102628
  • Cronin, K. A., Scott, S., Firth, A. U., Sung, H., Henley, S. J., Sherman, R. L., . . . Jemal, A. (2022). Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer, 128(24), 4251- 4284. doi:10.1002/cncr.34479
  • Feng, X., Liu, H., Pan, J., Xiong, Y., Zhu, X., Yan, X., . . . Huang, Y. (2022). Liposome-Encapsulated Tianci- mycin A Is Active against Melanoma and Meta- static Breast Tumors: The Effect of cRGD Modifi- cation of the Liposomal Carrier and Tiancimycin A Dose on Drug Activity and Toxicity. Mol Pharm, 19(4), 1078-1090. doi:10.1021/acs.molpharma- ceut.1c00753
  • Hu, J. K., Suh, H. W., Qureshi, M., Lewis, J. M., Ya- qoob, S., Moscato, Z. M., . . . Girardi, M. (2021). Nonsurgical treatment of skin cancer with local delivery of bioadhesive nanoparticles. Proc Natl Acad Sci U S A, 118(7), e2020575118. doi:10.1073/ pnas.2020575118
  • Hua, S. (2014). Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine, 9, 735-744. doi:10.2147/IJN.S55805
  • Hua, S. (2015). Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Phar- macol, 6, 219. doi:10.3389/fphar.2015.00219
  • Hua, S. (2019). Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front Pharmacol, 10, 1196, PMID: 31680970. doi:10.3389/fphar.2019.01196
  • Islam, M. T., Rodriguez-Hornedo, N., Ciotti, S., & Ackermann, C. (2004). Rheological characteriza- tion of topical carbomer gels neutralized to differ- ent pH. Pharm Res, 21(7), 1192-1199. doi:10.1023/ b:pham.0000033006.11619.07
  • ISO. (2009). Biological evaluation of medical devices In Part 5: Tests for in vitro cytotoxicity.
  • Jain, V., Kumar, H., Chand, P., Jain, S., Preethi, S. (2021). Lipid-Based Nanocarriers as Drug Deliv- ery System and Its Applications. In N. G. Vivek Dave, Srija Sur (Ed.), Nanopharmaceutical Ad- vanced Delivery Systems: Scrivener Publishing LLC. doi: https://doi.org/10.1002/9781119711698. ch1
  • Lin, H. M., Lin, L. F., Sun, M. Y., Liu, J., & Wu, Q. (2020). Topical Delivery of Four Neuroprotective Ingredients by Ethosome-Gel: Synergistic Com- bination for Treatment of Oxaliplatin-Induced Peripheral Neuropathy. Int J Nanomedicine, 15, 3251-3266. doi:10.2147/IJN.S233747
  • Liu, Y., Dai, C., Wang, K., Zou, C., Gao, M., Fang, Y., Zhao, M., Wu, Y., You, Q. (2017). Study on a Novel Cross-Linked Polymer Gel Strengthened with Sil- ica Nanoparticles. Energy Fuels, 31(9), 9152–9161. doi: 10.1021/acs.energyfuels.7b01432
  • Liu, Q., Das, M., Liu, Y., & Huang, L. (2018). Targeted drug delivery to melanoma. Adv Drug Deliv Rev, 127, 208-221. doi:10.1016/j.addr.2017.09.016
  • Lutzky, J., Nunez, Y., Graham, P ( 2006 ). A phase II trial of oxaliplatin in patients with advanced mel- anoma. Paper presented at the ASCO Annual Meeting.
  • Mahdi, E. S., Sakeena, M. H., Abdulkarim, M. F., Ab- dullah, G. Z., Sattar, M. A., & Noor, A. M. (2011). Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des Devel Ther, 5, 311-323. doi:10.2147/DDDT.S15698
  • Matos, B.N., Oliviera, P.M., Reis, T.A., Gratieri, T., Cunha-Filho, M., Gelfuso, G.M. (2015). Devel- opment and Validation of a Simple and Selective Analytical HPLC Method for the Quantification of Oxaliplatin. Journal of Chemistry, 2015, 812701 doi:10.1155/2015/812701
  • Mohammed, M. Q., & Retsas, S. (2000). Oxalipla- tin is active in vitro against human melanoma cell lines: comparison with cisplatin and car- boplatin. Anticancer Drugs, 11(10), 859-863. doi:10.1097/00001813-200011000-00010
  • Mohammed, W.L., Ali, W.K., Al-Awady, M.J. (2018). Evaluation of in vitro drug release kinetics and antibacterial activity of vancomycin HCl-loaded nanogel for topical application J. Pharm. Sci. & Res., 10(11), 2747-2756.
  • Napierska, D., Thomassen, L. C., Rabolli, V., Lison, D., Gonzalez, L., Kirsch-Volders, M., . . . Hoet, P. H. (2009). Size-dependent cytotoxicity of mon- odisperse silica nanoparticles in human endo- thelial cells. Small, 5(7), 846-853. doi:10.1002/ smll.200800461
  • Neophytou, C. M., Constantinou, C., Papageorgis, P., & Constantinou, A. I. (2014). D-alpha-to- copheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selective- ly in Survivin-overexpressing breast cancer cells. Biochem Pharmacol, 89(1), 31-42. doi:10.1016/j. bcp.2014.02.003
  • NIH. (2023). Skin Cancer (Including Melanoma)— Patient Version. Retrieved from https://www.can- cer.gov/types/skin
  • Patel, B.M., Kuchekar, A.B., Pawar, S.R. (2021). Emul- gel Approach to Formulation Development: A Review. Biosciences Biotechnology Research Asia, 18(3), 459-465.
  • Qu, F., Geng, R., Liu, Y., & Zhu, J. (2022). Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treat- ment. Theranostics, 12(7), 3372-3406. doi:10.7150/ thno.69999
  • Rauca, V. F., Patras, L., Luput, L., Licarete, E., Toma, V. A., Porfire, A., . . . Banciu, M. (2021). Remodeling tumor microenvironment by liposomal codelivery of DMXAA and simvastatin inhibits malignant melanoma progression. Sci Rep, 11(1), 22102. doi:10.1038/s41598-021-01284-5
  • Sandri, G., Bonferoni, M.C., Ferrari, F., Rossi, S., Car- amella, C.M. (2014). The Role of Particle Size in Drug Release and Absorption. In G. M. H. M. H.G. Merkus (Ed.), Particulate Products: Tailor- ing Properties for Optimal Performance. Switzer- land: Springer International Publishing, 19. doi: 10.1007/978-3-319-00714-4_11
  • Shaik,F. & Sekaran, R. (2021). Formulation develop- ment and evaluation of carbopol-incorporated mucoadhesive thermoreversible gels of sucralfate for rectal drug delivery. Hacettepe University Jour- nal of the Faculty of Pharmacy, 41(4), 234-242. doi: 10.52794/hujpharm.1012883
  • Slavkova, M., Tzankov, B., Popova, T., & Voycheva, C. (2023). Gel Formulations for Topical Treat- ment of Skin Cancer: A Review. Gels, 9(5), 352. doi:10.3390/gels9050352
  • Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W., & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol, 7, 22. doi:10.1186/1743-8977-7-22
  • Song, M., Liu, C., Chen, S., & Zhang, W. (2021). Nano- carrier-Based Drug Delivery for Melanoma Ther- apeutics. Int J Mol Sci, 22(4), 1873. doi:10.3390/ ijms22041873
  • Sotthivirat, S., Ramesh, R., Wasylaschuk, W., Bottone, C., Xia, B. F., Stellabott, J., . . . Brown, C. (2020). Effect of TPGS surfactant on dissolution sensitivi- ty of a poorly water-soluble drug using high-shear wet granulation. Powder Technology, 375, 302-309. doi:10.1016/j.powtec.2020.07.093
  • Thuy, L.T., Kang, N., Choi, M., Lee, M., Choi, J.S. (2022). Dendrimeric micelles composed of poly- amidoamine dendrimer-peptide-cholesterol con- jugates as drug carriers for the treatment of mela- noma and bacterial infection. Journal of Industrial and Engineering Chemistry, 114, 361–376. doi: 10.1016/j.jiec.2022.07.026
  • Timur, S. S., & Gursoy, R. N. (2020). Design and in vitro evaluation of solid SEDDS for breast cancer therapy. Journal of Drug Delivery Sci- ence and Technology, 60, 102023. doi: 10.1016/j. jddst.2020.102023
  • Timur, S. S., Yoyen-Ermis, D., Esendagli, G., Yonat, S., Horzum, U., Esendagli, G., & Gursoy, R. N. (2019). Efficacy of a novel LyP-1-containing self-micro- emulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. Eur J Pharm Biopharm, 136, 138-146. doi:10.1016/j. ejpb.2019.01.017
  • Tran, M. A., Watts, R. J., & Robertson, G. P. (2009a). Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell & Melano- ma Research, 22(4), 388-399. doi:10.1111/j.1755- 148X.2009.00581.x
  • Tran, M. A., Watts, R. J., & Robertson, G. P. (2009b). Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Mela- noma Res, 22(4), 388-399. doi:10.1111/j.1755- 148X.2009.00581.x
  • Umbreit, J. N., & Strominger, J. L. (1973). Relation of detergent HLB number to solubilization and sta- bilization of D-alanine carboxypeptidase from Ba- cillus subtilis membranes. Proc Natl Acad Sci U S A, 70(10), 2997-3001. doi:10.1073/pnas.70.10.2997
  • Varma, M. V., & Panchagnula, R. (2005). Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci, 25(4-5), 445-453. doi:10.1016/j.ejps.2005.04.003
  • Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., . . . Bar-Eli, M. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated pro- tease-activated receptor-1 small interfering RNA. Cancer Res, 68(21), 9078-9086. doi:10.1158/0008- 5472.CAN-08-2397
  • Wang, D., Dong, H., Li, M., Cao, Y., Yang, F., Zhang, K., . . . Zhang, X. (2018). Erythrocyte-Cancer Hy- brid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/ Chemotherapy of Melanoma. ACS Nano, 12(6), 5241-5252. doi:10.1021/acsnano.7b08355
  • Wang, K., Liu, L., Zhang, T., Zhu, Y. L., Qiu, F., Wu, X. G., . . . Huang, J. (2011). Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nano- medicine, 6, 3207-3218. doi:10.2147/IJN.S26268
  • Wang, Y., Mo, L., Wei, W., & Shi, X. (2013). Effica- cy and safety of dendrimer nanoparticles with coexpression of tumor necrosis factor-alpha and herpes simplex virus thymidine kinase in gene ra- diotherapy of the human uveal melanoma OCM- 1 cell line. Int J Nanomedicine, 8, 3805-3816. doi:10.2147/IJN.S48950
  • Xiong, W., Guo, Z., Zeng, B., Wang, T., Zeng, X., Cao, W., & Lian, D. (2022). Dacarbazine-Loaded Tar- geted Polymeric Nanoparticles for Enhancing Ma- lignant Melanoma Therapy. Front Bioeng Biotech- nol, 10, 847901. doi:10.3389/fbioe.2022.847901
  • Zhang, D., Wu, T., Qin, X., Qiao, Q., Shang, L., Song, Q., . . . Zhang, Z. (2019). Intracellularly Generated Immunological Gold Nanoparticles for Combina- torial Photothermal Therapy and Immunother- apy against Tumor. Nano Lett, 19(9), 6635-6646. doi:10.1021/acs.nanolett.9b02903
APA Timur S (2023). Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. , 443 - 458. 10.55262/fabadeczacilik.1338677
Chicago Timur Selin Seda Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. (2023): 443 - 458. 10.55262/fabadeczacilik.1338677
MLA Timur Selin Seda Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. , 2023, ss.443 - 458. 10.55262/fabadeczacilik.1338677
AMA Timur S Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. . 2023; 443 - 458. 10.55262/fabadeczacilik.1338677
Vancouver Timur S Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. . 2023; 443 - 458. 10.55262/fabadeczacilik.1338677
IEEE Timur S "Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma." , ss.443 - 458, 2023. 10.55262/fabadeczacilik.1338677
ISNAD Timur, Selin Seda. "Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma". (2023), 443-458. https://doi.org/10.55262/fabadeczacilik.1338677
APA Timur S (2023). Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. FABAD Journal of Pharmaceutical Sciences, 48(3), 443 - 458. 10.55262/fabadeczacilik.1338677
Chicago Timur Selin Seda Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. FABAD Journal of Pharmaceutical Sciences 48, no.3 (2023): 443 - 458. 10.55262/fabadeczacilik.1338677
MLA Timur Selin Seda Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. FABAD Journal of Pharmaceutical Sciences, vol.48, no.3, 2023, ss.443 - 458. 10.55262/fabadeczacilik.1338677
AMA Timur S Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. FABAD Journal of Pharmaceutical Sciences. 2023; 48(3): 443 - 458. 10.55262/fabadeczacilik.1338677
Vancouver Timur S Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma. FABAD Journal of Pharmaceutical Sciences. 2023; 48(3): 443 - 458. 10.55262/fabadeczacilik.1338677
IEEE Timur S "Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma." FABAD Journal of Pharmaceutical Sciences, 48, ss.443 - 458, 2023. 10.55262/fabadeczacilik.1338677
ISNAD Timur, Selin Seda. "Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma". FABAD Journal of Pharmaceutical Sciences 48/3 (2023), 443-458. https://doi.org/10.55262/fabadeczacilik.1338677