Yıl: 2023 Cilt: 48 Sayı: 3 Sayfa Aralığı: 523 - 538 Metin Dili: İngilizce DOI: 10.55262/fabadeczacilik.1344851 İndeks Tarihi: 04-12-2023

Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty

Öz:
Precocious puberty (PP) is the beginning of secondary sexual characteristics before eight years of age in girls. “Central precocious puberty (CPP)” occurs due to early activation of the hypothalamuspituitary-gonad axis. “Peripheral precocious puberty (PPP)” is a rarer, and different condition that sidelines the hypothalamuspituitary-gonad (HPG) axis, and it depends on the peripheral causes. Metabolomics is the identification, and quantitation small molecule metabolites (<1000 Da) in a certain period. This study aimed to determine the plasma, and urinary metabolic profiles of girls, who were diagnosed with CPP (n=50) or PPP (n=47), and compare their results to control group (n=50). Metabolomics analysis was performed by using gas chromatography-mass spectrometry. After the complex chromatograms were deconvoluted, and aligned, the metabolites were identified using retention index libraries. The results were evaluated statistically using univariate, and multivariate analysis. Binary compressions were performed between groups, and metabolites from amino acids were found to be significantly different between the groups. These alterations in metabolites are suggested for potential biomarkers of PP; however, more comprehensive studies are needed to verify these data, and for validation. In the future, the metabolic alterations underlying different diseases, particularly those of endocrine origin, should be evaluated with mechanistic toxicological studies. This will help the researchers to develop new therapy options, particularly for PP.
Anahtar Kelime: Central precocious puberty gas chromatography-mass spectrometry metabolomics peripheral precocious puberty

Merkezi ve Periferik Erken Ergenliği Olan Kız Çocuklarında Metabolomik Çalışmalar

Öz:
Puberte prekoks (PP), kızlarda sekonder cinsel özelliklerin sekiz yaşından önce başlamasıdır. Hipotalamus hipofiz-gonad ekseninin erken aktivasyonu nedeniyle “merkezi puberte prekoks (CPP)” meydana gelir. “Periferik puberte prekoks (PPP)” hipotalamus- hipofiz-gonad (HPG) aksına bağlı olmayan daha nadir görülen farklı bir durumdur ve periferik nedenlere bağlıdır. Metabolomiks, küçük molekül metabolitlerinin (<1000 Da) belirli bir süre içinde tanımlanması ve nicelendirilmesidir. Bu çalışmada CPP (n=50) ve PPP (n=47) tanısı alan kız çocukların plazma ve idrar metabolik profillerinin belirlenmesi ve sonuçlarının kontrol grubu (n=50) ile karşılaştırılması amaçlanmıştır. Metabolomik analiz, gaz kromatografisi-kütle spektrometresi kullanılarak yapılmıştır. Karmaşık kromatogramlar ayrıştırıldıktan ve düzenlendiken sonra, metabolitler tutunma indeksi kitaplıkları kullanılarak tanımlanmıştır. Sonuçlar, tek değişkenli ve çok değişkenli analiz kullanılarak istatistiksel olarak değerlendirilmiştir. Gruplar arasında ikili karşılaştırmalar yapılmış ve amino asitlerin metabolitlerinin gruplar arasında önemli ölçüde farklı olduğu bulunmuştur. Bu metabolitlerdeki değişiklikler potansiyel PP biyobelirteçleri olarak önerilebilir; ancak bu verileri doğrulamak ve validasyon için daha kapsamlı çalışmalara ihtiyaç vardır. Gelecekte, farklı hastalıkların, özellikle endokrin kaynaklı olanların altında yatan metabolik değişikliklerin, mekanistik toksikolojik çalışmalarla değerlendirilmesi gerekmektedir. Bu, araştırmacıların özellikle PP için yeni tedavi seçenekleri geliştirmelerine yardımcı olacaktır.
Anahtar Kelime: Merkezi puberte prekoks gaz kromatografisi gaz kromatografisi-kütle spektrometrisi metabolomik periferal puberte prekoks

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adeva-Andany, M., Souto-Adeva, G., Ameneiros- Rodríguez, E., Fernández-Fernández, C., Donapetry-García, C., Domínguez-Montero, A. (2018), Insulin resistance and glycine metabolism in humans. Amino Acids, 50(1), 11-27 doi: 10.1007/s00726-017-2508-0.
  • Albaugh, V. L., Stewart, M. K., Barbul, A. (2017), Nutrition and Functional Foods for Healthy Aging, Cellular and Physiological Effects of Arginine in Seniors. London, San Diego, Elsevier/ Academic Press. doi: 10.1016/B978-0-12-805376- 8.00027-7
  • Alves, A., Bassot, A., Bulteau, A. L., Pirola, L., Morio, B. (2019). Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients, 11(6), 1356. doi:10.3390/nu11061356.
  • Anuradha, C. V. (2009). Aminoacid support in the prevention of diabetes and diabetic complications. Curr Protein Pept Sci, 10(1), 8-17 doi: 10.2174/138920309787315194.
  • Bernini, P., Bertini, I., Luchinat, C., Nincheri, P., Staderini, S., Turano, P. (2011). Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR, 49(3-4), 231-243. doi: 10.1007/ s10858-011-9489-1.
  • Berberoğlu, M. (2009). Precocious puberty and normal variant puberty: definition, etiology, diagnosis and current management. J Clin Res Pediatr Endocrinol, 1(4), 164-74 doi: 10.4274/ jcrpe.v1i4.3
  • Boafo, A., Greenham, S., Alenezi, S., Robillard, R., Pajer, K., Tavakoli, P., De Koninck, J. (2019). Could long-term administration of melatonin to prepubertal children affect timing of puberty? A clinician’s perspective. Nat Sci Sleep, 11, 1-10 doi: 10.2147/NSS.S181365.
  • Bourguignon, J. P., Jaeken, J., Gerard, A., de Zegher, F. (1997). Amino acid neurotransmission and initiation of puberty: evidence from nonketotic hyperglycinemia in a female infant and gonadotropin-releasing hormone secretion by rat hypothalamic explants. J Clin Endocrinol Metab, 82(6), 1899-903 doi: 10.1210/jcem.82.6.4018.
  • Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS. (2013). The human urine metabolome. PLoS One, 8(9), e73076. doi: 10.1371/journal.pone.0073076.
  • Braun, D., Schweizer, U. (2018). Thyroid Hormone Transport and Transporters. Vitam Horm, 106, 19-44 doi: 10.1016/bs.vh.2017.04.005.
  • Brosnan, J. T., Brosnan, M. E. (2013). Glutamate: a truly functional amino acid. Amino Acids, 45(3), 413-8 doi: 10.1007/s00726-012-1280-4.
  • Buluş, A.D., Aşci, A., Erkekoglu, P., Balci, A., Andiran, N., Koçer-Gümüşel, B. (2016). The evaluation of possible role of endocrine disruptors in central and peripheral precocious puberty. Toxicol Mech Methods, 26(7), 493-500. doi: 10.3109/15376516.2016.1158894.
  • Chan, E. C., Pasikanti, K. K., Nicholson, J.K. (2011). Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc, 6(10), 1483-99 doi: 10.1038/ nprot.2011.375.
  • Choe, C.U., Nabuurs, C., Stockebrand, M. C., Neu, A., Nunes, P., Morellini, F., ..., Isbrandt, D. (2013). L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet, 22(1), 110-23. doi: 10.1093/hmg/dds407.
  • Comai, S., Bertazzo, A., Brughera, M., Crotti, S. (2020). Tryptophan in health and disease. Adv Clin Chem, 95, 165-218. doi: 10.1016/bs.acc.2019.08.005.
  • Creative Proteomics Metabolomics. 2023. Metabolomics Data Analysis. Available from: https://metabolomics.creative-proteomics.com/ metabolomics-data-analysis.htm Last accessed: September 9th, 2023.
  • Dejong, C. H., van de Poll, M. C., Soeters, P. B., Jalan, R., Olde Damink, S. W. (2007) Aromatic amino acid metabolism during liver failure. J Nutr, 137(6), 1579S-85S. doi: 10.1093/jn/137.6.1579S.
  • Dell’Osso, L., Carmassi, C., Mucci, F., Marazziti, D. (2016). Depression, Serotonin and Tryptophan. Curr Pharm Des, 22(8), 949-54. doi: 10.2174/138 1612822666151214104826.
  • Eylem, C.C., Yilmaz, M., Derkus, B., Nemutlu, E., Camci, C.B., Yilmaz, E., ..., Emregül E. (2020) Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of colorectal cancer in both clinical samples and cell culture. Cancer Lett, 469(1), 86-94. doi: 10.1016/j. canlet.2019.10.038.
  • Fernstrom, J.D., Fernstrom, M.H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr, 137(6), 1539S-47S. doi: 10.1093/jn/137.6.1539S.
  • Fuqua, J.S. (2013). Treatment and outcomes of precocious puberty: an update. J Clin Endocrinol Metab, 98(6), 2198-207. doi: 10.1210/jc.2013- 1024.
  • Grumbach, M. M. (2002). The neuroendocrinology of human puberty revisited. Horm Res, 57(2), 2-14. doi: 10.1159/000058094.
  • Hase, A., Jung, S. E., aan het Rot, M. (2015). Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav, 133, 1-6. doi: 10.1016/j.pbb.2015.03.008.
  • Hashimoto, A., Oka, T. (1997). Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol, 52(4), 325-53. doi: 10.1016/s0301- 0082(97)00019-1.
  • Haug, K., Salek, R.M., Steinbeck, C. (2017). Global open data management in metabolomics. Curr Opin Chem Biol, 36, 58-63. doi: 10.1016/j. cbpa.2016.12.024
  • Häusler, R. E., Ludewig, F., Krueger, S. (2014). Amino acids--a life between metabolism and signaling. Plant Sci, 229, 225-37. doi: 10.1016/j. plantsci.2014.09.011.
  • Ibba, M., Soll, D. (2000). Aminoacyl-tRNA synthesis. Annu Rev Biochem, 69, 617-50. doi: 10.1146/ annurev.biochem.69.1.617.
  • Joncquel-Chevalier Curt, M., Voicu, P. M., Fontaine, M., Dessein, A. F., Porchet, N., Mention-Mulliez, K., ..., Vamecq J. (2015). Creatine biosynthesis and transport in health and disease. Biochimie, 119, 146-65. doi: 10.1016/j.biochi.2015.10.022.
  • Kasuya, E., Nyberg, C. L., Mogi, K., Terasawa, E. (1999). A role of gamma-amino butyric acid (GABA) and glutamate in control of puberty in female rhesus monkeys: effect of an antisense oligodeoxynucleotide for GAD67 messenger ribonucleic acid and MK801 on luteinizing hormone-releasing hormone release. Endocrinology, 140(2), 705-12. doi:10.1210/ endo.140.2.6574.
  • Kiess, W., Hoppmann, J. Gesing, Penke, J. Körner, M. A. Kratzsch, J., P. Pfaeffle R. (2016). Puberty- genes, environment and clinical issues. J Pediatr Endocrinol Metab, 29(11), 1229-31. doi: 10.1515/ jpem-2016-0394.
  • Kletter, G.B., Klein, K.O., Wong, Y.Y. (2015). A pediatrician’s guide to central precocious puberty. Clin Pediatr (Phila), 54(5), 414-24. doi: 10.1177/0009922814541807.
  • Kohlmeier, M. (2003). Nutrient Metabolism. London: Academic Press.
  • Lee, D. Y., Kim, E. H. (2019). Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J Cancer Prev, 24(2), 72- 8. doi:10.15430/JCP.2019.24.2.72.
  • Liu, X., Locasale, J.W. (2017). Metabolomics: A Primer. Trends Biochem Sci, 42(4), 274-84. doi: 10.1016/j.tibs.2017.01.004.
  • Magnusson, M., Wang, T. J., Clish, C., Engström, G., Nilsson, P., Gerszten, R. E., Melander O, (2015). Dimethylglycine Deficiency and the Development of Diabetes. Diabetes, 64(8), 3010-6. doi: 10.2337/ db14-1863
  • Morris, S.M. (2016). Arginine Metabolism Revisited. J Nutr, 146(12), 2579s-86s. doi: 10.3945/ jn.115.226621.
  • Moutiez, M., Belin, P., Gondry, M. (2017). Aminoacyl- tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev, 117(8), 5578-618. https:// doi.org/10.1021/acs.chemrev.6b00523
  • Nadler, J. V. (2011). Aspartate release and signalling in the hippocampus. Neurochem Res, 36(4), 668-76. doi: 10.1007/s11064-010-0291-3.
  • Neis, V. B., Rosa, P. B., Olescowicz, G., Rodrigues, A. L. S. (2017). Therapeutic potential of agmatine for CNS disorders. Neurochem Int, 108, 318-31. doi:10.1016/j.neuint.2017.05.006.
  • Newgard, C.B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab, 25(1), 43-56. doi: 10.1016/j.cmet.2016.09.018.
  • Parker, S.J., Metallo, C.M. (2016). Chasing One- Carbon Units to Understand the Role of Serine in Epigenetics. Mol Cell, 61(2), 185-6. doi: 10.1016/j. molcel.2016.01.006.
  • Petroff, O. A. (2002). GABA and glutamate in the human brain. Neuroscientist, 8(6), 562-73. doi: 10.1177/1073858402238515.
  • Piletz, J. E., Aricioglu, F., Cheng, J.T., Fairbanks C.A., Gilad V.H., Haenisch B, ..., Gilad G. M. (2013). Agmatine: clinical applications after 100 years in translation. Drug Discovery Today, 18(17-18), 880- 93. doi: 10.1016/j.drudis.2013.05.017.
  • Plaitakis, A., Shashidharan, P. (2000). Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol, 247(2), 25-35. doi: 10.1007/pl00007757
  • Ploder, M., Neurauter, G., Spittler, A., Schroecksnadel, K., Roth, E., Fuchs, D. (2008). Serum phenylalanine in patients post trauma and with sepsis correlate to neopterin concentrations. Amino Acids, 35(2), 303-7. doi: 10.1007/s00726-007-0625-x.
  • Poomthavorn, P., Khlairit, P., Mahachoklertwattana, P. (2009). Subcutaneous gonadotropin-releasing hormone agonist (triptorelin) test for diagnosing precocious puberty. Horm Res, 72(2), 114-9. doi: 10.1159/000232164.
  • Qi, Y., Li, P., Zhang, Y., Cui, L., Guo, Z., Xie, G., ..., Jia W. (2012) Urinary metabolite markers of precocious puberty. Mol Cell Proteomics, 11(1). doi: 10.1074/mcp.M111.011072
  • Recber, T., Orgul, G., Aydin, E., Tanacan, A., Nemutlu, E., Kir, S., Beksac M., S. (2020). Metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase polymorphisms: A metabolomic analysis. Biomed Chromatogr, 34(8), e4842. doi: 10.1002/bmc.4842.
  • Richter, T. A., Terasawa, E. (2001). Neural mechanisms underlying the pubertal increase in LHRH release in the rhesus monkey. Trends Endocrinol Metab, 12(8), 353-9. doi:10.1016/s1043-2760(01)00442- 8.
  • Ritzén, E.M. (2003). Early puberty: what is normal and when is treatment indicated? Horm Res, 60(3), 31-4. doi: 10.1159/000074497.
  • Roth, C., Schmidberger, H., Lakomek, M., Witt, O., Wuttke, W., Jarry, H. (2001). Reduction of gamma- aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing- hormone-pulse generator leading to precocious puberty in female rats. Neurosci Lett, 297(1), 45-8. doi: 10.1016/s0304-3940(00)01663-3.
  • Ruhé, H. G., Mason, N. S., Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry, 12(4), 331-59. doi: 10.1038/sj.mp.4001949.
  • Schiffman, C., Petrick, L., Perttula, K., Yano, Y., Carlsson, H., Whitehead, T., Metayer, C., Hayes, J., Rappaport, S., Dudoit, S. (2019). Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinformatics, 20(1), 334. doi: 10.1186/ s12859-019-2871-9.
  • Schoelwer, M., Eugster, E.A. (2016). Treatment of Peripheral Precocious Puberty. Endocr Dev, 29, 230-9. doi: 10.1159/000438895
  • Shin, Y.L. (2016). An update on the genetic causes of central precocious puberty. Ann Pediatr Endocrinol Metab, 21(2), 66-9. doi: 10.6065/ apem.2016.21.2.66.
  • Smyth, C., Wilkinson, M. (1994). A critical period for glutamate receptor-mediated induction of precocious puberty in female rats. J Neuroendocrinol, 6(3), 275-84. doi: 10.1111/ j.1365-2826.1994.tb00583.x.
  • Sookoian, S., Pirola, C. J. (2012). Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol, 18(29), 3775-81. doi: 10.3748/wjg.v18.i29.3775.
  • Tapiero, H., Mathé, G., Couvreur, P., Tew, K. D. (2002). II. Glutamine and glutamate. Biomed Pharmacother, 56(9), 446-57. doi: 10.1016/s0753- 3322(02)00285-8.
  • Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., Fougerou C. (2017). Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol, 15(3), 434-43. doi: 10.2174/1570159X146661612 28122115
  • Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., Wu, G. (2013). Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids, 45(3), 463-77 doi:10.1007/s00726- 013-1493-1.
  • Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., ..., Yin Y. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-68 doi: 10.1007/ s00726-008-0210-y.
  • Yang, L., Tang, K., Qi, Y., Ye, H., Chen, W., Zhang, Y., Cao, Z. (2012). Potential metabolic mechanism of girls’ central precocious puberty: a network analysis on urine metabonomics data. BMC Syst Biol, 6(3), 19-28. doi: 10.1186/1752-0509-6-S3- S19.
  • Zampieri, M., Sekar, K., Zamboni, N., Sauer, U. (2017). Frontiers of high-throughput metabolomics. Curr Opin Chem Biol, 36, 15-23. doi: 10.1016/j. cbpa.2016.12.006.
  • Zeki, Ö.C., Eylem, C.C., Reçber, T., Kır, S., Nemutlu, E. (2020). Integration of GC-MS and LC- MS For Untargeted Metabolomics Profiling. J Pharm Biomed Anal, 113509. doi: 10.1016/j. jpba.2020.113509.
APA Balcı Ozyurt A, Reçber T, Buluş D, Nemutlu E, Kır S, Kocer Gumusel B, ERKEKOGLU P (2023). Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. , 523 - 538. 10.55262/fabadeczacilik.1344851
Chicago Balcı Ozyurt Aylin,Reçber Tuba,Buluş Derya,Nemutlu Emirhan,Kır Sedef,Kocer Gumusel Belma,ERKEKOGLU PİNAR Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. (2023): 523 - 538. 10.55262/fabadeczacilik.1344851
MLA Balcı Ozyurt Aylin,Reçber Tuba,Buluş Derya,Nemutlu Emirhan,Kır Sedef,Kocer Gumusel Belma,ERKEKOGLU PİNAR Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. , 2023, ss.523 - 538. 10.55262/fabadeczacilik.1344851
AMA Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. . 2023; 523 - 538. 10.55262/fabadeczacilik.1344851
Vancouver Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. . 2023; 523 - 538. 10.55262/fabadeczacilik.1344851
IEEE Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P "Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty." , ss.523 - 538, 2023. 10.55262/fabadeczacilik.1344851
ISNAD Balcı Ozyurt, Aylin vd. "Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty". (2023), 523-538. https://doi.org/10.55262/fabadeczacilik.1344851
APA Balcı Ozyurt A, Reçber T, Buluş D, Nemutlu E, Kır S, Kocer Gumusel B, ERKEKOGLU P (2023). Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. FABAD Journal of Pharmaceutical Sciences, 48(3), 523 - 538. 10.55262/fabadeczacilik.1344851
Chicago Balcı Ozyurt Aylin,Reçber Tuba,Buluş Derya,Nemutlu Emirhan,Kır Sedef,Kocer Gumusel Belma,ERKEKOGLU PİNAR Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. FABAD Journal of Pharmaceutical Sciences 48, no.3 (2023): 523 - 538. 10.55262/fabadeczacilik.1344851
MLA Balcı Ozyurt Aylin,Reçber Tuba,Buluş Derya,Nemutlu Emirhan,Kır Sedef,Kocer Gumusel Belma,ERKEKOGLU PİNAR Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. FABAD Journal of Pharmaceutical Sciences, vol.48, no.3, 2023, ss.523 - 538. 10.55262/fabadeczacilik.1344851
AMA Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. FABAD Journal of Pharmaceutical Sciences. 2023; 48(3): 523 - 538. 10.55262/fabadeczacilik.1344851
Vancouver Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty. FABAD Journal of Pharmaceutical Sciences. 2023; 48(3): 523 - 538. 10.55262/fabadeczacilik.1344851
IEEE Balcı Ozyurt A,Reçber T,Buluş D,Nemutlu E,Kır S,Kocer Gumusel B,ERKEKOGLU P "Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty." FABAD Journal of Pharmaceutical Sciences, 48, ss.523 - 538, 2023. 10.55262/fabadeczacilik.1344851
ISNAD Balcı Ozyurt, Aylin vd. "Metabolomic Studies in Girls With Central and Peripheral Precocious Puberty". FABAD Journal of Pharmaceutical Sciences 48/3 (2023), 523-538. https://doi.org/10.55262/fabadeczacilik.1344851