Yıl: 2023 Cilt: 11 Sayı: 4 Sayfa Aralığı: 958 - 972 Metin Dili: İngilizce DOI: 10.36306/konjes.1302313 İndeks Tarihi: 12-12-2023

EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES

Öz:
Carbon fiber reinforced polymer (CFRP) composites are widely used engineering materials in aerospace technologies. These electrically conductive carbon-based materials, due to the lightness advantages, are preferred as shields against electromagnetic radiation, especially in aircraft and satellites. However, the performance losses caused by damage because of flying object collision such as bird, hail, or projectile contain significant uncertainty. Herein, the CFRP composite material was structurally damaged by low velocity impact test set-up at various energy levels between 2.5 to 10 joules, and then its electromagnetic interference (EMI) shielding performance was investigated. In addition, the electrical properties of the material were also examined, and the occurred damage status was evaluated by microscopy studies. Intrinsically, the increase in impact energy increases the grade of damage on body of the material. This results in a drastic decrease in electrical conductivity and EMI performance. In experiments, where 5 joule energy is detected as a threshold level, it has been observed that irreparable damage occurs at energy levels above this value.
Anahtar Kelime: CFRP composite Damage Electromagnetic interference shielding Electrical conductivity Low velocity impact

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Han, C. E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C. Min Koo, G. Friedman, and Y. Gogotsi, “Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding”, ACS Nano, vol. 14, no. 4, pp. 5008–5016, 2020.
  • [2] D. Carpenter, “Human disease resulting from exposure to electromagnetic fields”, Reviews on Environmental Health, vol. 28, no. 4, pp. 159-172, 2013.
  • [3] D. A. Yilmaz, İ. H. Çağiran, G. Dege, and M. S. Yildirim, “Effects of Electromagnetic Pollution on Health”, MAUNSagBil.Derg. vol. 2, no. 2, pp. 67-79.
  • [4] D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, and A. Long, “Electromagnetic shielding effectiveness of carbon fibre reinforced Composites”, Composites Part B. vol. 173, pp. 106906, 2019.
  • [5] D. D. Soyaslan, "Design and Manufacturing of Fabric Reinforced Electromagnetic Shielding Composite Materials", Textile and Apparel, vol. 30, no. 2, June, pp. 92-98, 2020.
  • [6] X. Jia, Y. Li, B. Shen, and W. Zheng, “Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review”. Composites Part B vol. 233, pp. 109652, 2022.
  • [7] H. Abbasi, M. Antunes, and J. I. Velasco, “Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding”, Progress in Materials Science, vol. 103, pp. 319-373.
  • [8] Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, and S. Jiang, “Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding”, Composites Part A, vol. 135. pp. 105960, 2021.
  • [9] F. Yıldırım, E. Kabakçı, H. S. Şaş, and V. Eskizeybek, “Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding”, Polymer Composite, vol. 43, pp. 5690, 2020.
  • [10] M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, and J. Yuan, “The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites”, Carbon, vol. 48, no. 3, pp. 788-796, 2010.
  • [11] J. M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, “Polymer/carbonbased composites as electromagnetic interference (EMI) shielding materials”, Materials Science and Engineering: R, vol. 74, no. 7, pp. 211-232, 2013.
  • [12] R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, W. K. Tan, K. K. Kar, and A. Matsuda, “Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding”, Carbon, vol. 177, pp. 304-331, 2021.
  • [13] H. J. Sim, D. W. Lee, H. Kim, Y. Jang, G. M. Spinks, S. Gambhir, D. L. Officer, G. G. Wallace, and S. J. Kim, “Self-healing graphene oxide-based composite for electromagnetic interference shielding”, Carbon, vol. 155, pp. 499-505, 2019.
  • [14] H. Zhang, X. Zheng, R. Jiang, Z. Liu, W. Li, and X. Zhou, “Research progress of functional composite electromagnetic shielding materials”, European Polymer Journal, vol. 185, pp. 111825, 2023.
  • [15] European Aviation Safety Agency, “Bird Strike Damage & Windshield Bird Strike Final Report”, 5078609-rep-03 Version 1.1,
  • [16] T. Wang, W. C. Yu, W. J. Sun, L. C. Jia, J. F. Gao, J. H. Tang, H. J. Su, D. X. Yan, and Z. M. Li, “Healable polyurethane/carbon nanotube composite with segregated Structure for efficient electromagnetic interference shielding”, Composites Science and Technology, vol. 200, pp. 108446, 2020.
  • [17] W. Cai, N. Shao, X. Shao, and Z. Pan, “Structural analysis of carbon clusters by using a global optimization algorithm with Brenner potential”, Journal of Molecular Structure: THEOCHEM, vol. 678, no. 1–3, pp. 113-122, 2004.
  • [18] J. Yang, X. Liao, J. Li, G. He, Y. Zhang, W. Tang, G. Wang, and G. Li, “Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption”, Composites Science and Technology, vol. 181, pp. 107670, 2019.
  • [19] Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang, J. Yi, Q. Yang, and G. Li, “Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic”, Composites Part A: Applied Science and Manufacturing, vol. 123, pp. 310-319, 2019.
  • [20] R. Ravindren, S. Mondal, K. Nath, and N. C. Das, “Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites”, Composites Part A: Applied Science and Manufacturing, vol. 118, pp. 75-89, 2019.
  • [21] E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen, and C. Gao, “Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films”, Carbon, vol. 133, pp. 316-322, 2018.
  • [22] L. Wei, N. Li, G. D. Wang, X. L. Liu, Y. X. Liu, and Y. C. Shen, “The effect of rolling process on the mechanical and electrical properties of CNTs-enhanced GFRP”, Materials Today Communications, vol. 32, pp. 103998, 2022.
  • [23] W. Ma, W. Cai, W. Chen, P. Liu, J. Wang, and Z. Liu, “A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding”, Chemical Engineering Journal, vol. 426, pp. 130729, 2021.
  • [24] T. Wang, W. C. Yu, C. G. Zhou, W. J. Sun, Y. P. Zhang, L. C Jia, J. F Gao, K. Dai, D. X Yan, and Z. M. Li, “Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding”, Composites Part B: Engineering, vol. 193, pp. 108015, 2020.
  • [25] D. Y. Yoo, M. C. Kang, H. J. Choi, W. Shin, and S. Kim, “Electromagnetic interference shielding of multi-cracked high-performance fiber-reinforced cement composites – Effects of matrix strength and carbon fiber”, Construction and Building Materials, vol. 261, pp. 119949, 2020.
  • [26] S. Kim, Y. S. Jang, T. Oh, S. K. Lee, and D. Y. Yoo, “Effect of crack width on electromagnetic interference shielding effectiveness of high-performance cementitious composites containing steel and carbon fibers”, Journal of Materials Research and Technology, vol. 20, pp. 359-372, 2022.
  • [27] G. Mutlu, F. Yıldırım, H. Ulus, and V. Eskizeybek, “Coating graphene nanoplatelets onto carbon fabric with controlled thickness for improved mechanical performance and EMI shielding effectiveness of carbon/epoxy composites”, Engineering Fracture Mechanics, vol. 284, pp. 109271, 2023.
  • [28] D. Mi, X Li, Z Zhao, Z Jia, and W. Zhu, “Effect of dispersion and orientation of dispersed phase on mechanical and electrical conductivity”, Polymer Composites, vol. 42, pp. 4277, 2021.
  • [29] V. Zaroushani, A. Khavanin, S. B. Mortazavi, and A. J. Jafari, “Efficacy of Net Epoxy Resin for Electromagnetic Shielding in X-Band Frequency Range”, Health Scope, vol. 5(3), pp. e30203, 2016.
  • [30] A. Andrea, A. Suarez, J. Torres, P. A. Martinez, R. Herraiz, A. Alcarria, A. Benedito, R. Ruiz, P. Galvez, and A. Penades, "Shielding Effectiveness Measurement Method for Planar Nanomaterial Samples Based on CNT Materials up to 18 GHz", Magnetochemistry, vol. 9, pp. 114, 2023.
  • [31] IEEE Standards Association, IEEE Std 2715-2023, “IEEE Guide for the Characterization of the Shielding Effectiveness of Planar Materials”, IEEE Electromagnetic Compatibility Society Approved 15 February 2023.
  • [32] IEEE Standards Association, IEEE Std 521-2019, “IEEE Standard Letter Designations for Radar- Frequency Bands”, IEEE Aerospace and Electronic Systems Society, Approved 7 November 2019.
  • [33] J. Baker-Jarvis, “Transmission/Reflection and Short-Circuit Line Permittivity Measurements”, NIST Technical Note 1341, published by the National Institute of Standards and Technology (NIST), Boulder, CO, USA, 1990.
  • [34] B. Clarke, A. Gregory, D. Cannel, M. Patrick, S. Wylie, I. Youngs, and H. Hill, “A Guide to Characterization of Dielectric Materials at RF and Microwave Frequencies”, London: NPL, 2003. ISBN:0904457389.
  • [35] C. Fan, B. Wu, R. Song, Y. Zhao, Y. Zhang, and D. He, “Electromagnetic shielding and multi-beam radiation with high conductivity multilayer graphene film”, Carbon, vol. 155, pp. 506-513, 2019.
  • [36] A. Kaushal and V. Singh, “Electromagnetic interference shielding response of multiwall carbon nanotube/polypropylene nanocomposites prepared via melt processing technique”, Polymer Composites, vol. 42, pp. 1148–1154, 2021.
  • [37] H. Oraby, I. Naeem, M. Darwish, M. H. Senna, and H. R. Tantawy, “Effective electromagnetic interference shielding using foamy polyurethane composites”, Polymer Composites, vol. 42, pp. 3077, 2021.
  • [38] V. Shukla, “Review of electromagnetic interference shielding materials fabricated by iron ingredients”, Nanoscale Adv, vol. 1, pp. 1640-1671, 2019.
  • [39] R. Kumar, S. R. Dhakate, T. Gupta, P. Saini, B. P. Singh, and R. M. Mathur, “Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes”, Journal of Materials Chem A, vol. 1, pp. 5727-5735, 2013.
  • [40] R. Pal, S. L. Goyal, I. Rawal, and A. K. Gupta, “Tailoring of EMI shielding properties of polyaniline with MWCNTs embedment in X-band (8.2–12.4 GHz)”, Journal of Physics and Chemistry Solids, vol. 169, pp. 110867, 2022.
  • [41] C. Liang, M. Hamidinejad, L. Ma, Z. Wang, and C. B. Park, “Lightweight and flexible graphene/SiC- nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management”, Carbon, vol. 156, no. 58-66, 2020.
  • [42] Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang, Z. Zhang, “Thin and flexible multi-walled carbon nanotube waterborne polyurethane composites with high-performance electromagnetic interference shielding”, Carbon, vol. 96, pp. 768, 2016.
  • [43] K. Jagatheesan, A. Ramasamy, A. Das, and A. Basu, “Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics – A review”, Indian Journal of Fibre & Textile Research, vol. 39, pp. 329-342, 2014.
  • [44] H. Lv, X. Liang, G. Ji, H. Zhang, and Y. Du, “Porous three-dimensional flower-like Co/ CoO and its excellent electromagnetic absorption properties”, ACS Applied Material Interfaces, vol. 7, pp. 9776– 9783, 2015.
  • [45] C. Wang, Y. Ding, Y. Yuan, X. He, S. Wu, S. Hu, M. Zou, W. Zhao, L. Yang, A. Cao, and Y. Li, “Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption”, Journal of Materials and Chemistry. C, vol. 3, pp. 11893–11901, 2015.
  • [46] B. P. Singh, Prasanta, V. Choudhary, P. Saini, S. Pande, V. Singh, and R. Mathur, “Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites”, Journal of Nanoparticle Research, vol. 15, pp. 1, 2013.
  • [47] D. Bigg, “The effect of chemical exposure on the EMI shielding of conductive Plastics”, Polymer Composites, vol. 8, no. 1, pp. 1–7, 1987.
  • [48] T. Peng, S. Wang, Z. Xu, T. Tang, and Y. Zhao, “Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection”, ACS Omega, vol. 7, no. 33, pp. 29161-29170, 2022.
  • [49] J. He, M. Han, K. Wen, C. Liu, W. Zhang, Y. Liu, X. Su, C. Zhang, and C. Liang, “Absorption- dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching”, Composites Science and Technology, vol. 231, pp. 109799, 2023.
  • [50] X. Hong, T. Peng, C. Zhu, J. Wan, and Y. Li, “Electromagnetic shielding, resistance temperature- sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper”, Journal of Alloys and Compounds, vol. 882, pp. 160756, 2021.
APA YILDIRIM F (2023). EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. , 958 - 972. 10.36306/konjes.1302313
Chicago YILDIRIM FERHAT EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. (2023): 958 - 972. 10.36306/konjes.1302313
MLA YILDIRIM FERHAT EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. , 2023, ss.958 - 972. 10.36306/konjes.1302313
AMA YILDIRIM F EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. . 2023; 958 - 972. 10.36306/konjes.1302313
Vancouver YILDIRIM F EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. . 2023; 958 - 972. 10.36306/konjes.1302313
IEEE YILDIRIM F "EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES." , ss.958 - 972, 2023. 10.36306/konjes.1302313
ISNAD YILDIRIM, FERHAT. "EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES". (2023), 958-972. https://doi.org/10.36306/konjes.1302313
APA YILDIRIM F (2023). EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. Konya mühendislik bilimleri dergisi (Online), 11(4), 958 - 972. 10.36306/konjes.1302313
Chicago YILDIRIM FERHAT EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. Konya mühendislik bilimleri dergisi (Online) 11, no.4 (2023): 958 - 972. 10.36306/konjes.1302313
MLA YILDIRIM FERHAT EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. Konya mühendislik bilimleri dergisi (Online), vol.11, no.4, 2023, ss.958 - 972. 10.36306/konjes.1302313
AMA YILDIRIM F EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. Konya mühendislik bilimleri dergisi (Online). 2023; 11(4): 958 - 972. 10.36306/konjes.1302313
Vancouver YILDIRIM F EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES. Konya mühendislik bilimleri dergisi (Online). 2023; 11(4): 958 - 972. 10.36306/konjes.1302313
IEEE YILDIRIM F "EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES." Konya mühendislik bilimleri dergisi (Online), 11, ss.958 - 972, 2023. 10.36306/konjes.1302313
ISNAD YILDIRIM, FERHAT. "EFFECT OF LOW-VELOCITY IMPACT DAMAGE ON THE ELECTROMAGNETIC INTERFERENCE SHIELDING EFFECTIVENESS OF CFRP COMPOSITES". Konya mühendislik bilimleri dergisi (Online) 11/4 (2023), 958-972. https://doi.org/10.36306/konjes.1302313