Yıl: 2023 Cilt: 12 Sayı: 4 Sayfa Aralığı: 1160 - 1170 Metin Dili: İngilizce DOI: 10.17798/bitlisfen.1349138 İndeks Tarihi: 03-01-2024

Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.

Öz:
The traditionally used plant Alcea calvertii (Boiss.) Boiss. (Malvaceae) was extracted by two more methods in addition to those used by the locals, in this study. It was found that ethanol extraction significantly improved the release of total phenolic content of all plant parts compared to extraction by infusion and traditional use. In addition, ethanol appears to be a good solvent for the extracting flavonoids and phenolic contents from A. calvertii. However, metal chelating power was found to be higher in the infusion extracts than in the ethanolic extracts. The antibacterial activities of all extracts from the plant parts were also tested. As a result, it has been confirmed in this study that A. calvertii is rich in phenolic compounds and flavonoids and has high antioxidant activity with strong metal chelating power, however, the right plant parts must come together with the right extraction method for this effect to occur.
Anahtar Kelime: Alcea calvertii Total Phenolic Content Total Flavonoid Content Metal Chelating Power Antibacterial Activity Traditional Medicine

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] N. Ibrahim, I. Mat, V. Lim, and R. Ahmad, “Antioxidant activity and phenolic content of Streblus asper leaves from various drying methods,” Antioxidants, vol. 2, no. 3, pp. 156–166, 2013.
  • [2] M. Dash, J. K. Patra, and P. P. Panda, “Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb,” Afr. J. Biotechnol., vol. 7, no. 20, pp. 3531–3534, 2008.
  • [3] H. Jemai, A. El Feki, and S. Sayadi, “Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from Olive leaves in alloxan-diabetic rats,” J. Agric. Food Chem., vol. 57, no. 19, pp. 8798–8804, 2009.
  • [4] A.-M. Boudet, “Evolution and current status of research in phenolic compounds,” Phytochemistry, vol. 68, no. 22–24, pp. 2722–2735, 2007.
  • [5] C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” Am. J. Clin. Nutr., vol. 79, no. 5, pp. 727–747, 2004.
  • [6] A. Scalbert and G. Williamson, “Chocolate: Modern science investigates an ancient medicine. foreword,” J. Nutr, vol. 130, no. 8, pp. 2073–2085, 2000.
  • [7] E. Altundag and M. Ozturk, “Ethnomedicinal studies on the plant resources of east Anatolia, Turkey,” Procedia. Soc. Behav. Sci., vol. 19, pp. 756–777, 2011.
  • [8] F. Naghibi, S. Esmaeili, M. Hassanpour, and A. Mosaddegh, “Ethnobotanical survey of medicinal plants used traditionally in two villages of Hamedan, Iran,” Iran. Res. J. Pharm., vol. 1, no. 3, pp. 7–14, 2014.
  • [9] M. Mosaddegh, S. Esmaeili, A. Hassanpour, M. Malekmohammadi, and F. Naghibi, “Ethnobotanical study in the highland of Alvand and Tuyserkan, Iran,” Iran Res. J. Pharm., vol. 3, no. 1, pp. 7–17, 2016.
  • [10] P. A. Dar, F. Ali, I. A. Sheikh, S. A. Ganie, and T. A. Dar, “Amelioration of hyperglycaemia and modulation of antioxidant status by Alcea rosea seeds in alloxan-induced diabetic rats,” Pharm. Biol., vol. 55, no. 1, pp. 1849–1855, 2017.
  • [11] N. A. Abdel-salam et al., “Flavonoids of Alcea rosea L. and their immune stimulant, antioxidant and cytotoxic activities on hepatocellular carcinoma HepG-2 cell line,” Nat. Prod. Res., vol. 32, no. 6, pp. 702–706, 2018.
  • [12] K. Asres, F. Bucar, T. Kartnig, M. Witvrouw, C. Pannecouque, and E. De Clercq, “Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants,” Phytother. Res., vol. 15, no. 1, pp. 62–69, 2001.
  • [13] S. M. Seyyednejad, H. Koochak, E. Darabpour, and H. Motamedi, “A survey on Hibiscus rosa—sinensis, Alcea rosea L. and Malva neglecta Wallr as antibacterial agents,” Asian Pac. J. Trop. Med., vol. 3, no. 5, pp. 351–355, 2010.
  • [14] V. Tene, O. Malagón, P. V. Finzi, G. Vidari, C. Armijos, and T. Zaragoza, “An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador,” J. Ethnopharmacol., vol. 111, no. 1, pp. 63–81, 2007.
  • [15] D. Hamdy and A. Hassabo, “Various natural dyes using plant palette in coloration of natural fabrics,” J.Text. Color. Pol. Sci., vol. 0, no. 0, pp. 0–0, 2021.
  • [16] B. K. G. N. Mehlika, B. l. Uuml mit, G. Fatmaguuml l, and Y. Nazife, “Antimicrobial activity of some endemic plant species from Turkey,” Afr. J. Biotechnol., vol. 6, no. 15, pp. 1774–1778, 2007.
  • [17] S. Keser et al., “In vitro Antiradical, Antimicrobial and Antiproliferative Activities and Phytochemical Compositions of Endemic Alcea calvertii (Boiss) Boiss. Flowers,” Düzce Üniv. Bil. Teknol. Derg., vol. 8, no. 1, pp. 693–701, 2020.
  • [18] M. Abudayyak, Ş. Kanbolat, R. Ergene, Ş. Batur, and R. Ali̇yazicioğlu, “Investigation of the Biological Activities of Alcea calvertii,” KSU J. Agric. Nat.., vol. 25, no. 5, pp. 955–964, 2022.
  • [19] V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “[14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Meth. Enzymol., vol. 299, pp. 152–178, 1999.
  • [20] J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chem., vol. 64, no. 4, pp. 555–559, 1999.
  • [21] T. C. Dinis, V. M. Maderia, and L. M. Almeida, “Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers,” Arch. Biochem. Biophys., vol. 315, no. 1, pp. 161–169, 1994.
  • [22] J. Y. Wong and F. Y. Chye, “Antioxidant properties of selected tropical wild edible mushrooms,” J. Food Compost. Anal., vol. 22, no. 4, pp. 269–277, 2009.
  • [23] F. Bonilla, M. Mayen, J. Merida, and M. Medina, “Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants,” Food Chem., vol. 66, no. 2, pp. 209–215, 1999.
  • [24] I. Amin, Y. Norazaidah, and K. I. E. Hainida, “Antioxidant activity and phenolic content of raw and blanched Amaranthus species,” Food Chem., vol. 94, no. 1, pp. 47–52, 2006.
  • [25] E. L. Ghisalberti, “Detection and isolation of bioactive natural products,” Bioact. Nat. Prod., 25-90, CRC Press, 1993.
  • [26] M. Zakizadeh, S. F. Nabavi, S. M. Nabavi, and M. A. Ebrahimzadeh, “In vitro antioxidant activity of flower, seed and leaves of Alcea hyrcana Grossh,” Eur. Rev. Med. Pharmacol. Sci., vol. 15, no. 4, pp. 406–412, 2011.
  • [27] M. S. M. Sopee, A. Azlan, and H. E. Khoo, “Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water,” J. Food Meas. Charact., vol. 13, no. 3, pp. 1958–1963, 2019.
  • [28] G. O. Guler, “Studies on antioxidant properties of the different solvent extracts and fatty acid composition of Hyoscyamus reticulatus L,” J. Food Biochem., vol. 36, no. 5, pp. 532–538, 2012.
  • [29] K. Ghasemi, Y. Ghasemi, and M. A. Ebrahimzadeh, “Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues,” Pak. J. Pharm. Sci., vol. 22, no. 3, pp. 277–281, 2009.
  • [30] S. Silva, L. Gomes, F. Leitão, A. V. Coelho, and L. V. Boas, “Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves,” Food Sci. Technol. Int., vol. 12, no. 5, pp. 385–395, 2006.
  • [31] A. Ertas et al., “Fatty acid, essential oil and phenolic compositions of Alcea pallida and Alcea apterocarpa with antioxidant, anticholinesterase and antimicrobial activities,” Chiang Mai J. Sci., vol. 43, no. 1, pp. 89–99, 2016.
  • [32] M. Ong, S. Mat Yusuf, and V. Lim, “Pharmacognostic and Antioxidant Properties of Dracaena sanderiana Leaves,” Antioxidants, vol. 5, no. 3, p. 28, 2016.
  • [33] M. Rosas, C. Rafols, J. Ortega, and E. Bosch, “Solute- solvent and solvent-solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET (30) polarity of bipolar hydrogen bond acceptor-cosolvent mixtures,” J. Chem. Soc. Perkin Trans., vol. 2, no. 8, pp. 1607–1615, 1995.
  • [34] Ö. V. Rúnarsson et al., “Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships,” Eur. Polym. J., vol. 43, no. 6, pp. 2660–2671, 2007.
  • [35] L. R. Saikia and S. Upadhyaya, “Antioxidant activity, phenol and flavonoid content of some less known medicinal plants of assam,” Int. J. of Pharma Bio Sci., vol. 2, no. 2, pp. 383–388, 2011.
  • [36] Y. Pirmohammadi, S. Asnaashari, H. Nazemiyeh, and S. Hamedeyazdan, “Bioactivity assays and phytochemical analysis upon Alcea glabrata; focusing on xanthine oxidase inhibitory and antimalarial properties,” Toxicon, vol. 229, no. 107140, p. 107140, 2023.
  • [37] E. Karimi, H. Z. E. Jaafar, and S. Ahmad, “Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of labisa pumila Benth,” Molecules, vol. 16, no. 6, pp. 4438–4450, 2011.
  • [38] M. Krishnaveni, P. Madhaiyan, S. Durairaj, L. Amsavalli, and R. Chandrasekar, “Antioxidant activity of plants at Chinnatirupathi, Salem, Tamil Nadu, India,” Int. J. Pharma. Sci. Res., vol. 4, no. 10, 2013.
  • [39] S. Ouahhoud et al., “Antioxidant activity, metal chelating ability and DNA protective effect of the hydroethanolic extracts of Crocus sativus stigmas, tepals and leaves,” Antioxidants, vol. 11, no. 5, pp. 932, 2022.
  • [40] B. Halliwell, “Reactive oxygen species in living systems: Source, biochemistry, and role in human disease,” Am. J. Med., vol. 91, no. 3, pp. S14–S22, 1991.
  • [41] Y. V. Yuan, D. E. Bone, and M. F. Carrington, “Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro,” Food Chem., vol. 91, no. 3, pp. 485–494, 2005.
  • [42] M. R. Bhandari and J. Kawabata, “Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal,” Food Chem., vol. 88, no. 2, pp. 163–168, 2004.
  • [43] A. Azab, “Alcea: Traditional medicine,” Cur. Res. Fut. Op., vol. 5, pp. 505–514, 2016.
APA Biçek A, IRTEM KARTAL D, ÖZGÖKÇE F, Ozaktas T (2023). Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. , 1160 - 1170. 10.17798/bitlisfen.1349138
Chicago Biçek Ayşe Gözde,IRTEM KARTAL DENIZ,ÖZGÖKÇE FEVZİ,Ozaktas Tugba Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. (2023): 1160 - 1170. 10.17798/bitlisfen.1349138
MLA Biçek Ayşe Gözde,IRTEM KARTAL DENIZ,ÖZGÖKÇE FEVZİ,Ozaktas Tugba Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. , 2023, ss.1160 - 1170. 10.17798/bitlisfen.1349138
AMA Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. . 2023; 1160 - 1170. 10.17798/bitlisfen.1349138
Vancouver Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. . 2023; 1160 - 1170. 10.17798/bitlisfen.1349138
IEEE Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T "Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.." , ss.1160 - 1170, 2023. 10.17798/bitlisfen.1349138
ISNAD Biçek, Ayşe Gözde vd. "Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.". (2023), 1160-1170. https://doi.org/10.17798/bitlisfen.1349138
APA Biçek A, IRTEM KARTAL D, ÖZGÖKÇE F, Ozaktas T (2023). Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(4), 1160 - 1170. 10.17798/bitlisfen.1349138
Chicago Biçek Ayşe Gözde,IRTEM KARTAL DENIZ,ÖZGÖKÇE FEVZİ,Ozaktas Tugba Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12, no.4 (2023): 1160 - 1170. 10.17798/bitlisfen.1349138
MLA Biçek Ayşe Gözde,IRTEM KARTAL DENIZ,ÖZGÖKÇE FEVZİ,Ozaktas Tugba Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.12, no.4, 2023, ss.1160 - 1170. 10.17798/bitlisfen.1349138
AMA Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2023; 12(4): 1160 - 1170. 10.17798/bitlisfen.1349138
Vancouver Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2023; 12(4): 1160 - 1170. 10.17798/bitlisfen.1349138
IEEE Biçek A,IRTEM KARTAL D,ÖZGÖKÇE F,Ozaktas T "Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12, ss.1160 - 1170, 2023. 10.17798/bitlisfen.1349138
ISNAD Biçek, Ayşe Gözde vd. "Comparison of Antioxidant Activity, Metal Chelating Power and Antibacterial Activity in Different Tissues of Alcea calvertii (Boiss.) Boiss.". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12/4 (2023), 1160-1170. https://doi.org/10.17798/bitlisfen.1349138