Yıl: 2023 Cilt: 23 Sayı: 3 Sayfa Aralığı: 753 - 771 Metin Dili: Türkçe DOI: 10.35414/akufemubid.1173331 İndeks Tarihi: 04-01-2024

Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği

Öz:
Bu çalışmanın amacı; tekstil endüstrisinde yaygın olarak kullanılan bir boyarmadde olan Reaktif Mavi 21 (RM21)’in atık sulardan adsorpsiyon yöntemiyle uzaklaştırılmasında kaolin yüzeyine dekore edilmiş bakır katkılı çinko oksit nanokompozitinin adsorban olarak kullanılabilirliğinin araştırılmasıdır. Adsorpsiyon üzerine, başlangıç RM21 konsantrasyonu, adsorban miktarı, sıcaklık ve denge süresi gibi çeşitli deneysel parametrelerin etkileri incelenmiştir. Adsorpsiyon hızının ikinci mertebeden hız ifadesine uyduğu ve kaolin yüzeyine dekore edilmiş bakır katkılı çinko oksit nanokompozitinin RM21 üzerine adsorpsiyonunun Redlich-Peterson izoterm modeliyle uyum sağladığı görülmüştür. Bu çalışmanın sonuçları, RM21’nin sulu çözeltilerden uzaklaştırılmasında kaolin yüzeyine dekore edilmiş bakır katkılı çinko oksit nanokompozitinin etkili bir adsorban olarak kullanılabileceğini göstermiştir.
Anahtar Kelime: Adsorpsiyon Boyar madde Reaktif Mavi 21 Bakır Oksit Çinko Oksit Kaolin

Adsorption, Kinetics and Thermodynamics of Reactive Blue 21 Textile Dyestuff Using Copper Doped Zinc Oxide Nanocomposite Decorated on Kaolin Surface

Öz:
The aim of this study is to investigate the usability of copper-doped zinc oxide nanocomposite decorated on kaolin surface as an adsorbent in the removal of Reactive Blue 21 (RM21), a widely used dyestuff in the textile industry, from wastewater by adsorption method. The effects of various experimental parameters such as initial RM21 concentration, amount of adsorbent, temperature and equilibrium time on adsorption were investigated. It was observed that the adsorption rate matched the second-order rate expression and the adsorption of copper-doped zinc oxide nanocomposite decorated on the kaolin surface on RM21 was consistent with the Redlich-Peterson isotherm model. The results of this study showed that copper doped zinc oxide nanocomposite decorated on kaolin surface can be used as an effective adsorbent in the removal of RM21 from aqueous solutions.
Anahtar Kelime: Adsorption Dyestuff Reactive Blue 21 Copper Oxide Zinc Oxide Kaolinite

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad, I., Kan C., Yao Z., 2019. Photoactive cotton fabric for UV protection and self-cleaning. RSC Advances, 9, 18106-18114.
  • Al-Ghouti, M. A., Da’ana, D. A., 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383.
  • Alkan M., Çelikçapa, S., Demirbaş, Ö., Doğan, M., 2005. Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65, 251-259
  • Al-Tohamy R., Ali S.S, Li F., Okasha K.M., Mahmoud Y.A.- G., Elsamahy T., Jiao H., Fu Y., Sun J., 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety 231,113160.
  • Alswat, A.A., Al-shorifi, F. T., Ali, S. L., 2022. Preparation of Nanohybrid CuO-Fe3O4/Zeolite Nanocomposite as Potential Adsorbent for Toxic As (V) and Pb(II) from Water Solution. Iranian Journal of Materials Science and Engineering, 19 (3), 1-13.
  • Aksu Z, Isoglu I.A., 2007. Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper (II) ions: equilibrium modeling. Chemical Engineering Journal 127, 177- 188.
  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., Ximba, B. J., 2013. Activated Carbon-Fly Ash-Nanometal Oxide Composite Materials: Preparation, Characterization, and Tributyltin Removal Efficiency. Journal of Chemistry, 148129.
  • Baldermann A., and Stamm F.M., 2022. Effect of kinetics, pH, aqueous speciation and presence of ferrihydrite on vanadium (V) uptake by allophanic and smectitic clays. Chemical Geology, 607, 121022.
  • Bamfield, P., 2001. Chromic Phenomena: The Techonological Applications of Colour Chemistry. Cambridge, UK, Royal Society of Chemistry.
  • Bayramoğlu, G., Altintas, B., Arica, M.Y., 2009. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346.
  • Bayramoğlu G, Kunduzcu G, Arica MY., 2020. Preparation and characterization of strong cation exchange terpolymer resin as efective adsorbent for removal of disperse dyes. Polymer Engineering & Science, 60(1), 192-201.
  • Bensalah, J., Habsaoui, A., Dagdag, O., Lebkiri, A., Ismi, I., Rifi, E. H., Warad, I., Zarrouk, A., 2021. Adsorption of a cationic dye (Safranin) by artificial cationic resins Amberlite®IRC-50: Equilibrium, kinetic and thermodynamic study. Chemical Data Collections, 35, 100756.
  • Bilińska, L., Blus, K., Gmurek, M., Ledakowicz, S., 2019. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992-1001.
  • Binaeian E., Zadvarzi S.B., Yuan D., 2020. Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. International Journal of Biological Macromolecules, 162, 150-162.
  • Boulika, H., El Hajam, M., Nabih, M. H., Karim, I. R., Kandri, N. I., Zerouale A., 2023. Definitive screening design applied to cationic & anionic adsorption dyes on Almond shells activated carbon: Isotherm, kinetic and thermodynamic studies. Materials Today: Proceedings, 72, 3336-3346.
  • Broadbent, A.D. 2001. Basic Principles of Textile Coloration. West Yorkshire, UK, Society of Dyers and Colourists.
  • Chandrabose G., Dey A., Gaur S.S., Pitchaimuthu S., Jagadeesan H., Braithwaite N.J., Selvaraj V., Kumar V., Krishnamurthy S., 2021. Removal and degradation of mixed dye pollutants by integrated adsorption- photocatalysis technique using 2-D MoS2/TiO2 nanocomposite. Chemosphere, 279, 130467.
  • De Gisi S., Lofrano G., Grassi M., Notarnicola M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustainable Materials and Technologies, 9, 10-40.
  • Demir, B., Kalpaklı, Y., 2020. İşlem Görmemiş Kütahya Ca- Bentonitinin Bazik Mavi 41 (BB41) Adsorpsiyon Karakteristiğinin İncelenmesi, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 309-319.
  • Demir, Ö., Gök, A., Kırbaşlar, Ş. A., 2022. Optimization of protocatechuic acid adsorption onto weak basic anion exchange resins: kinetic, mass transfer, isotherm, and thermodynamic Study, Biomass Conversion and Biorefinery, 138.
  • El-Bindary, A.A., Abd El-Kawi, M.A., Hafez, A.M.., Rashed, I.G.A and Aboelnaga, E.E., 2016. Removal of reactive blue 19 from aqueous solution using rice straw fly ash. Journal of Materials and Environmental Science, 7 (3), 1023-1036.
  • El-Desouky, M. G., El-Bindary, A. A., El-Bindary, M. A., 2021. Low-Temperature Adsorption Study of Carbon Dioxide on Porous Magnetite Nanospheres Iron Oxide. Biointerface Research in Applied Chemistry, 12(5), 6252-6268.
  • Eren, E., Çağlar, B., Eren, B., Tabak, A., 2010. Equilibrium and kinetic studies on the removal of basic dye using raw and thermal-activeted Fatsa bentonite. Fresenius Environmental Bulletin, 19 (5), 773-782.
  • Eskandari, P., Farhadian, M., Nazar, A. R. S., Goshadrou, A., 2021. Cyanide adsorption on activated carbon impregnated with ZnO, Fe2O3, TiO2 nanometal oxides: a comparative study, International Journal of Environmental Science and Technology, 18, 297–316
  • Ewis D., Ba-Abbad M.M., Benamor A., Mahmud N., Nasser M., El-Naas M., Mohammad A.W., 2022. Adsorption of 4-Nitrophenol onto Iron Oxide Bentonite Nanocomposite: Process Optimization, Kinetics, Isotherms and Mechanism. International Journal of Environmental Research, 16, 23.
  • Fadillah G., Yudha S.P, Sagadevan S., Fatimah I., Muraza O., 2020. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chemistry, 18, 1148- 1166.
  • Gad, H. M. H., El-Sayed, A. A., 2009. Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials 168, 1070–1081.
  • Gan, W., Shang, X., Li, X.H., Zhang, J., Fu, X., 2019. Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene-like TiO2@C. Colloids and Surfaces A. 561, 218-225.
  • Ghaffar, A., Adeel, S., Habib, N., Jalal, F., Atta-ul-Haq, Munir, B., Ahmad, A., Jahangeer, M., Jamil, Q., 2019. Effects of Microwave Radiation on Cotton Dyeing with Reactive Blue 21 Dye. Pol. J. Environ. Stud. 28(3), 1687-1691.
  • Gholitabar, S., Tahermansouri, H., 2017. Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound. Carbon Letters. 22, 14-24.
  • Haladu, S. A., 2022. Highly efficient adsorption of malachite green dye onto a cross-linke pH-responsive cycloterpolymer resin: Kinetic, equilibrium and thermodynamic studies, Journal of Molecular Liquids, 357, 119115.
  • Hamad H.N. and Idrus S., 2022. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers, 14, 783.
  • Hassan M.M., Carr C.M., 2018. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209, 201-219.
  • Kalam, S., Abu-Khamsin S.A., Kamal, M.S. and Patil S., 2021. Surfactant Adsorption Isotherms: A Review. ACS Omega, 6, 32342-32348.
  • Karaoğlu, M. H., Doğan, M., Alkan, M., 2009. Removal of cationic dyes by kaolinite. Microporous and Mesoporous Materials, 122, 20-27.
  • Keleş Güner E. ve Çağlar B., 2020. CuxZn(1-x)O Nanoparçacıklarıyla Dekore Edilmiş Kaolin Nanokompozitinin Sentezi, Karakterizasyonu ve Fotokatalitik Aktivitesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 369-383.
  • Khan T.A., Khan E.A., Shahjahan, 2015. Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modelling, Applied Clay Science, 107, 70-77.
  • Kızıltaş, H., 2022. Production of highly effective adsorbent from tea waste, and its adsorption behaviors and characteristics for the removal of Rhodamine B. International Journal of Environmental Analytical Chemistry, 1, 1-20.
  • Kibanova, D., Sleiman, M., Cervini-Silva, J., Destaillats, H., 2012. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of Hazardous Materials. 211-212, 233–239.
  • Kiełbasa, K., Kaminska, A., Niedoba, O., Michalkiewicz, B., 2021. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials, 14, 7458.
  • Kul, A. R., Benek, V., Erge, H., Demirci, S., Adıgüzel, V., 2022. Van Pomzası Üzerine Malahit Yeşili Boyar Maddesinin Adsorpsiyonunun İzoterm Çalışması. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15 (1), 12-19.
  • Kumbhar P., Narale D., Bhosale R., Jambhale C., Kim J.H., Kolekar S., 2022. Synthesis of tea waste/Fe3O4 magnetic composite (TWMC) for efficient adsorption of crystal violet dye: Isotherm, kinetic and thermodynamic studies, Journal of Environmental Chemical Engineering, 10, 107893.
  • Küçük, İ., 2021. Methylene blue adsorption capacity and coherent isotherm model of commercial activated carbon, Cumhuriyet Science Journal, 42(4), 843-851.
  • Lagergren, S., 1898. Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1–39.
  • Lellis, B., Fávaro-Polonio, C.Z. Pamphile J.A., Polonio, J.C., 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation (3), 2, 275-290.
  • Liu S, Li B, Qi P, Yu W, Zhao J, Liu Y, 2019. Performance of freshly generated magnesium hydroxide (FGMH) for reactive dye removal. Colloid and Interface Science Communications, 28, 34-40.
  • Lu, C., Chiu, H., 2006. Adsorption of Zinc(II) from water with purified carbon nanotubes. Chemical Engineering Science. 61 (4), 1138-1145
  • Luo C., Yao W., Gao X., 2022. Degradation of a Reactive Orange 16 in textile wastewater treatment using CuO/ZnO nanocomposite as photocatalyst. International Journal of Electrochemical Science, 17, 220732.
  • Mahmood R.S, 2022. The uptake of Eriochrome Black T dye from Wastewater utilizing synthesized Cadmium Sulfide Nanoparticles. Egyptian Journal of Chemistry, 65(6), 699-706.
  • Markandeya, Mohan D., Prasad Shukla S., 2022. Hazardous consequences of textile mill effluents on soil and their remediation approaches. Cleaner Engineering and Technology, 7, 100434.
  • Mia, R., Selim, M., Shamim, A., Mugdho, M. C., Sultana, S., Armin, M., Naznin, H., 2019. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. Journal of Textile Engineering, 5, 220-226.
  • Muthuvela A., Jothibasa M., Manoharan C., 2020. Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and invitro antioxidant activity. Journal of Environmental Chemical Engineering, 8, 103705.
  • Nandi, B.K., Goswami, A., Purkait M. K., 2009. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42, 583–590.
  • Nasar, A. and Mashkoor, F., 2019. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review. Environmental Science and Pollution Research, 26 (6), 5333-5356.
  • Naseem T., and Durrani T., 2021. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 3, 59-75.
  • Nazifa, T. H., Habba, N., Salmiati, Aris, A., & Hadibarata, T., 2017. Adsorption of Procion Red MX-5B and Crystal Violet Dyes from Aqueous Solution onto Corncob Activated Carbon. Journal of the Chinese Chemical Society, 65(2), 259-270.
  • Ncibi, M.C., Mahjoub, B., Seffen M., 2007. Adsorptive removal of textile reactive dye using posidonia oceanica (L.) fibrous biomass. International Journal of Environmental Science and Technology, 4 (4), 433- 440.
  • Özdemir, A.O., 2015. Pamuk Liflerinin Renklendirilmesinde Boyama Verimi ve Kinetiğinin Araştırılması. Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, 160.
  • Özdemir, A.O., Tutak, M., 2016. Reaktif Siyah 5 Boyasının Pamuklu Kumaşı Boyama Davranışı: K/S Renk Verimi, Fiksaj ve Haslıklar. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 5 (1), 83-88
  • Pala, S. L., Mekala, S., Ravindhranath K., 2022. Novel adsorbents for simultaneous extraction of lead and cadmium ions from polluted water: based on active carbon, nanometal (Zr-Ce-Sm)-mixed oxides and iron- alginate beads. Biomass Conversion and Biorefinery, Early Access
  • Patra T., Mohanty A., Singh L., Muduli S., Parhi P.K., Sahoo T.R., 2022. Effect of calcination temperature on morphology and phase transformation of MnO2 nanoparticles: A step towards green synthesis for reactive dye adsorption. Chemosphere, 288, 132472.
  • Rais, A., 2009. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials. 171, 767–773.
  • Rind, I.K., Tuzen, M., Sarı, A., Lanjwani, M.F., Memon, N., Saleh, T.A., 2023. Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay (KC) and their efficiency for As(III) adsorption. Chemical Engineering Research and Design. 191, 523- 536.
  • Saeed, T., Naeem, A., Din, I. U., Farooq, M., Khan, I. W., Hamayun, M., Malik, T., 2022. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. Journal of Hazardous Materials, 427, 127902.
  • Saloğlu, D., 2019. Mikro Kirletici Naproksenin Atık Sulardan Spirulina platensis ile Modifiye Edilmiş Kitosan-Polivinilalkol Biyokompozitleri ile Adsorpsiyonu. BEÜ Fen Bilimleri Dergisi, 8(2), 506- 520.
  • Sarı, A., Soylak, M., 2006. Equilibrium and thermodynamic studies of stearic acid adsorption on Celtek clay. Journal of the Serbian Chemical Society, 72 (5), 485-494.
  • Senthil Rathi B., Senthil Kumar P., 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995.
  • Simonic, M., Flucher, V., Luxbacher, T., Vesel, A., Zemljic, L. F., 2022. Adsorptive Removal of Heavy Metal Ions by Waste Wool. Journal of Natural Fibers, 1-14.
  • Stengl V. and Krˇalov ́a D., 2011. TiO2/ZnS/CdS Nanocomposite for Hydrogen Evolution and Orange II Dye Degradation, International Journal of Photoenergy, 532578.
  • Sun Y.F., Liu S.B., Meng F.L., Liu J.Y., Jin Z., Kong L.T., Liu J.H., 2012. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors, 12, 2610-2631.
  • Tekin, D. Tekin, T. Kızıltaş H., 2020. Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff. Desalination and Water Treatment, 198, 376-385.
  • Vaghela N.R., Nath K., 2020. Reduced graphene oxide coated graphite electrodes for treating Reactive Turquoise Blue 21 rinse water using an indirect electro oxidation process. SN Applied Sciences, 2, 1839.
  • Velusamy S., Roy A., Sundaram S., Mallick T.K., 2021. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chemical Record, 21, 1570-1610.
  • Viana, T., Henriques, B., Ferreira, N., Pinto R. J. B., Monteiro, F. L. S., Pereira E., 2023. Insight into the mechanisms involved in the removal of toxic, rare earth and platinum elements from complex mixtures by Ulva sp. Chemical Engineering Journal, 453, 139630.
  • Weber, J.W.J., Morriss, J.C., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civil Eng. 89, 31–60.
  • Xu, R., Zou, W., Rao, B., Zhao, W., Wang, T., Zhang, Z., 2023. In situ kinetics and flocs conformation studies of kaolinite flocculated by Chi-g-CPAM. International Journal of Minerals, Metallurgy and Materials, 30 (5), 813-823.
  • Xu, S., Niu, X., Hou, Z., Gao, C., Lu, J., Pang, Y., Joshy, K. 2020. A multifunctional gelatine–quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. Journal of Hazardous Materials, 383, 121142.
  • Yagub M.T., Sen T.K., Afroze S., Ang H.M., 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184.
  • Zewde, D., and Geremew, B., 2022. Removal of Congo red using Vernonia amygdalina leaf powder: optimization, isotherms, kinetics, and thermodynamics studies, Environmental Pollutants And Bioavailability, 34(1), 88-101.
  • Zheng, S., Sun, Z., Park, Y., Ayoko, G. A., Frost, R. A., 2013. Removal of bisphenol a from wastewater by Ca- montmorillonite modified with selected surfactants, Chemical Engineering Journal, 234, 416-422.
  • Zhou Y., Lu J., Zhou Y., Liu Y., 2019. Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352-365.
APA KELES GÜNER E, Özdemir A, DOĞAN B, Caglar B (2023). Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. , 753 - 771. 10.35414/akufemubid.1173331
Chicago KELES GÜNER EDA,Özdemir Agah Oktay,DOĞAN Bilge,Caglar Bulent Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. (2023): 753 - 771. 10.35414/akufemubid.1173331
MLA KELES GÜNER EDA,Özdemir Agah Oktay,DOĞAN Bilge,Caglar Bulent Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. , 2023, ss.753 - 771. 10.35414/akufemubid.1173331
AMA KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. . 2023; 753 - 771. 10.35414/akufemubid.1173331
Vancouver KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. . 2023; 753 - 771. 10.35414/akufemubid.1173331
IEEE KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B "Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği." , ss.753 - 771, 2023. 10.35414/akufemubid.1173331
ISNAD KELES GÜNER, EDA vd. "Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği". (2023), 753-771. https://doi.org/10.35414/akufemubid.1173331
APA KELES GÜNER E, Özdemir A, DOĞAN B, Caglar B (2023). Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(3), 753 - 771. 10.35414/akufemubid.1173331
Chicago KELES GÜNER EDA,Özdemir Agah Oktay,DOĞAN Bilge,Caglar Bulent Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 23, no.3 (2023): 753 - 771. 10.35414/akufemubid.1173331
MLA KELES GÜNER EDA,Özdemir Agah Oktay,DOĞAN Bilge,Caglar Bulent Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.23, no.3, 2023, ss.753 - 771. 10.35414/akufemubid.1173331
AMA KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2023; 23(3): 753 - 771. 10.35414/akufemubid.1173331
Vancouver KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2023; 23(3): 753 - 771. 10.35414/akufemubid.1173331
IEEE KELES GÜNER E,Özdemir A,DOĞAN B,Caglar B "Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği." Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23, ss.753 - 771, 2023. 10.35414/akufemubid.1173331
ISNAD KELES GÜNER, EDA vd. "Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 23/3 (2023), 753-771. https://doi.org/10.35414/akufemubid.1173331