Yıl: 2023 Cilt: 4 Sayı: 2 Sayfa Aralığı: 65 - 75 Metin Dili: İngilizce DOI: 10.53501/rteufemud.1293580 İndeks Tarihi: 05-01-2024

Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications

Öz:
This paper focuses on the development of high-quality bioceramic foams for the treatment of hard tissue defects, which are a widespread clinical problem worldwide. In this experimental study, α-alumina (Al2O3) ceramics with boron carbide (B4C) additives, intended for use in biomedical applications, were produced and characterized as highly porous using the replication method. The thermal properties of open-pore polyurethane sponges, with a pore size of 20 ppi, used as an economical polymer model material, were determined by thermo-gravimetric (TGA) and derivative thermogravimetric analysis (DTG). Ceramic foams based on Al2O3, with varying B4C ratios, were obtained by high-temperature sintering and were thoroughly examined using high-resolution field emission gun scanning electron microscopy (FEG-SEM) for homogeneity, high porosity, and interconnected pore microstructure. X-ray diffraction (XRD) analyses confirmed the presence of B4C within the structure and phase changes. The compressive strength values of sintered ceramic foams containing 0%, 3%, and 5% B4C by weight were measured as 1.92 MPa, 2.05 MPa, and 2.38 MPa, respectively. In vitro tests were performed to evaluate the biological response that biomaterials intended for use in living environments would produce. Satisfactory results were obtained from cell viability experiments, demonstrating that the addition of B4C to Al2O3-based ceramic foams supports cell proliferation, which is an important advantage in hard tissue defect treatment.
Anahtar Kelime: Al2O3 B4C Ceramic foam In vitro Macro porous Microstructure

Sert Doku Uygulamaları için Makro Gözenekli Alüminyum Oksit-Bor Karbür Seramikleri

Öz:
Bu çalışma, dünya çapında yaygın bir klinik problem olan sert doku defektlerinin tedavisi için yüksek kaliteli biyoseramik köpüklerin geliştirilmesine odaklanmaktadır. Bu deneysel çalışmada, biyomedikal alanlarda kullanılması hedeflenen bor karbür (B4C) ilaveli α-alüminyum oksit (Al2O3) seramikler replika yöntemi ile yüksek gözenekli olarak üretilmiş ve karakterize edilmiştir. Ekonomik polimer model malzeme olarak kullanılan açık gözenekli, 20 ppi gözenek boyutunda poliüretan süngerlerin termogravimetrik (TGA) ve derivatif termogravimetrik analizleri (DTG) ile termal özellikleri belirlenmiştir. Yüksek sıcaklıkta sinterlenerek elde edilen, farklı B4C oranları içeren Al2O3 esaslı seramik köpükler homojen, yüksek gözenekli ve birleştirici gözenek mikroyapısında olduğu yüksek alan emisyon tabancalı taramalı elektron mikroskobu (FEG-SEM) ile detaylı olarak incelenmiştir. X-ışınları (XRD) analizleri ile B4C’nin yapı içerisinde varlığı ve faz değişimleri doğrulanmıştır. Yapısında ağırlıkça %0, %3 ve %5 B4C içeren sinterlenmiş seramik köpüklerin basma mukavemeti değerleri sırasıyla 1,92 MPa, 2,05 MPa ve 2,38 MPa olarak ölçülmüştür. Canlı ortamlarda kullanılacak biyomalzemelerin oluşturacağı biyolojik cevabın önceden değerlendirilmesi amacıyla yapılan in vitro testlerde tatmin edici sonuçlar elde edilmiştir. Hücre canlılığı deneyleri, Al2O3 esaslı seramik köpüklere B4C ilavesinin sert doku defektlerinde önemli bir avantaj olan hücre proliferasyonunu desteklediğini göstermiştir.
Anahtar Kelime: Al2O3 B4C Seramik köpük In vitro Makro gözenek Mikroyapı

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, M., Ramadan, R., Afifi, M., Menazea, A. (2020). Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. Journal of Materials Research and Technology, 9(4), 8854–8866. https://doi.org/10.1016/j.jmrt.2020.06.006
  • Akbari beni, H., Alizadeh, M., Ghaffari, M., Amini, R. (2014). Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Composites Part B: Engineering, 58, 438–442. https://doi.org/10.1016/j.compositesb.2013.1 0.037
  • Barth, R.F., Vicente, M.H., Harling, O.K., Kiger, W., Riley, K.J., Binns, P.J., Wagner, F.M., Suzuki, M., Aihara, T., Kato, I., Kawabata, S. (2012). Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 7(1), 1-21. https://doi.org/10.1186/1748-717x-7-146
  • Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A. (2013). Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 31(10), 594–605. https://doi.org/10.1016/j.tibtech.2013.06.005
  • Bute, A., Jagannath, Kar, R., Chopade, S., Desai, S., Deo, M., Rao, P., Chand, N., Kumar, S., Singh, K., Patil, D., Sinha, S. (2016). Effect of self-bias on the elemental composition and neutron absorption of boron carbide films deposited by RF plasma enhanced CVD. Materials Chemistry and Physics, 182, 62–71. https://doi.org/10.1016/j.matchemphys.2016. 07.005
  • Chen, A.N., Li, M., Xu, J., Lou, C.H., Wu, J.M., Cheng, L.J., Shi, Y.S., Li, C.H. (2018). High- porosity mullite ceramic foams prepared by selective laser sintering using fly ash hollow spheres as raw materials. Journal of the European Ceramic Society, 38(13), 4553– 4559. https://doi.org/10.1016/j.jeurceramsoc.2018. 05.031
  • Chen, Y.C., Tuan, W.H., Lai, P.L. (2021). Transformation from calcium sulfate to calcium phosphate in biological environment. Journal of Materials Science: Materials in Medicine, 32(12), 1-11. https://doi.org/10.1007/s10856-021-06622-7
  • Dzondo-Gadet, M., Mayap-Nzietchueng, R., Hess, K., Nabet, P., Belleville, F., Dousset, B. (2002). Action of boron at the molecular level effects on transcription and translation in an acellular system. Biological Trace Element Research, 85(1), 23–33. https://doi.org/10.1385/bter:85:1:23
  • Gosset, D., Miro, S., Doriot, S., Moncoffre, N. (2016). Amorphisation of boron carbide under slow heavy ion irradiation. Journal of Nuclear Materials, 476, 198–204. https://doi.org/10.1016/j.jnucmat.2016.04.03 0
  • Han, Y.S., Li, J.B., Wei, Q.M., Tang, K. (2002). The effect of sintering temperatures on alumina foam strength. Ceramics International, 28(7), 755–759. https://doi.org/10.1016/s0272- 8842(02)00039-1
  • Jang, B.K., Enoki, M., Kishi, T., Oh, H.K. (1995). Effect of second phase on mechanical properties and toughening of Al2O3 based ceramic composites. Composites Engineering, 5(10–11), 1275–1286. https://doi.org/10.1016/0961-9526(95)00069- y
  • Karlsson, M., Pålsgård, E., Wilshaw, P., Di Silvio, L. (2003). Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials, 24(18), 3039–3046. https://doi.org/10.1016/s0142- 9612(03)00146-7
  • Kido, H.W., Ribeiro, D.A., de Oliveira, P., Parizotto, N.A., Camilo, C.C., Fortulan, C.A., Marcantonio, E., da Silva, V.H.P., Muniz Renno, A.C. (2013). Biocompatibility of a porous alumina ceramic scaffold coated with hydroxyapatite and bioglass. Journal of Biomedical Materials Research Part A, 102(7), 2072–2078. https://doi.org/10.1002/jbm.a.34877
  • Luo, J., Shi, X., Li, L., Tan, Z., Feng, F., Li, J., Pang, M., Wang, X., He, L. (2021). An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioactive Materials, 6(12), 4816– 4829. https://doi.org/10.1016/j.bioactmat.2021.05.0 22
  • Marchi, J., Delfino, C.S., Bressiani, J.C., Bressiani, A. H.A., Marques, M.M. (2009). Cell proliferation of human fibroblasts on alumina and hydroxyapatite-based ceramics with different surface treatments. International Journal of Applied Ceramic Technology, 7(2), 139–147. https://doi.org/10.1111/j.1744- 7402.2009.02388.x
  • Marti, A. (2000). Inert bioceramics (Al2O3, ZrO2) for medical application. Injury, 31, D33–D36. https://doi.org/10.1016/s0020- 1383(00)80021-2
  • Mirzayev, M.N., Demir, E., Mammadov, K.F., Sukratov, V.A., Jabarov, S.H., Biira, S., Asgerov, E.B., Abdurakhimov, B.A., Tuğrul, A.B. (2020). Amorphisation of boron carbide under gamma irradiation. Pramana, 94(1), 1- 8. https://doi.org/10.1007/s12043-020-01980- 3
  • Mortensen, M., Sørensen, P., Björkdahl, O., Jensen, M., Gundersen, H., Bjørnholm, T. (2006). Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Applied Radiation and Isotopes, 64(3), 315–324. https://doi.org/10.1016/j.apradiso.2005.08.00 3
  • Naga, S.M., El-Kady, A.M., El-Maghraby, H.F., Awaad, M., Detsch, R., Boccaccini, A.R. (2013). Novel porous Al2O3-SiO2-TiO2 bone grafting materials: Formation and characterization. Journal of Biomaterials Applications, 28(6), 813–824. https://doi.org/10.1177/0885328213483634
  • Nielsen, F.H. (2008). Is boron nutritionally relevant? Nutrition Reviews, 66(4), 183–191. https://doi.org/10.1111/j.1753- 4887.2008.00023.x
  • Oliveira, F.C., Dias, S., Vaz, M.F., Fernandes, J.C. (2006). Behaviour of open-cell cordierite foams under compression. Journal of the European Ceramic Society, 26 (1–2), 179– 186. https://doi.org/10.1016/j.jeurceramsoc.2004. 10.008
  • Öksüz, K.E., Kurt, B., Şahin İnan, Z.D., Hepokur, C. (2023). Novel bioactive glass/graphene oxide- coated surgical sutures for soft tissue regeneration. ACS Omega, 8(24), 21628– 21641. https://doi.org/10.1021/acsomega.3c00978
  • Öksüz, K.E. (2019). Effect of composition and sintering temperature on the structure and properties of porous bioactive glass scaffolds, Chiang Mai Journal of Science, 46(3), 568- 578. http://epg.science.cmu.ac.th/ejournal/
  • Öksüz, K.E., Özkaya, N.K., İnan, Z.D.A., Özer, A. (2021). Novel natural spider silk embedded electrospun nanofiber mats for wound healing. Materials Today Communications, 26, 101942. https://doi.org/10.1016/j.mtcomm.2020.1019 42
  • Öksüz, K., Özer, A. (2017). Effect of yttria on the phase formation and sintering of HA-Al2O3 biocomposites. Acta Physica Polonica A, 131(3), 576–580. https://doi.org/10.12693/aphyspola.131.576
  • Özer, A., Öksüz, K. (2019). The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: Phase, mechanical and morphological evaluation. Materialwissenschaft und Werkstofftechnik, 50(11), 1382–1390. https://doi.org/10.1002/mawe.201800141
  • Silva, J.R.S., Santos, L.N.R.M., Farias, R.M.C., Sousa, B.V., Neves, G.A., Menezes, R.R. (2022). Alumina applied in bone regeneration: Porous α-alumina and transition alumina. Cerâmica, 68(387), 355–363. https://doi.org/10.1590/0366- 69132022683873335
  • Sulyman, M., Kucinska-Lipka, J., Sienkiewicz, M., Gierak, A. (2021). Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies. Arabian Journal of Chemistry, 14(5), 103115. https://doi.org/10.1016/j.arabjc.2021.103115
  • Suri, A.K., Subramanian, C., Sonber, J.K., Murthy, T. S.R.C. (2010). Synthesis and consolidation of boron carbide: a review. International Materials Reviews, 55(1), 4–40. https://doi.org/10.1179/095066009x1250672 1665211
  • Tan, W., Jiang, X., Shao, Z., Sun, H., Song, T., Luo, Z. (2020). Fabrication and mechanical properties of α-Al2O3 whisker reinforced cu-graphite matrix composites. Powder Technology, 375, 124–135. https://doi.org/10.1016/j.powtec.2020.07.105
  • Tian, Y. (1999). A Review of: Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. Materials and Manufacturing Processes, 14(2), 300–301. https://doi.org/10.1080/10426919908907558
  • Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278– 314. https://doi.org/10.1016/j.bioactmat.2017.10.0 01
  • Werheit, H. (2016). Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable. Solid State Sciences, 60, 45–54. https://doi.org/10.1016/j.solidstatesciences.2 016.08.006
  • Wu, R., Li, Y., Shen, M., Yang, X., Zhang, L., Ke, X., Yang, G., Gao, C., Gou, Z., Xu, S. (2021). Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation. Bioactive Materials, 6(5), 1242–1254. https://doi.org/10.1016/j.bioactmat.2020.11.0 03
  • Xue, N., Ding, X., Huang, R., Jiang, R., Huang, H., Pan, X., Min, W., Chen, J., Duan, J.A., Liu, P., Wang, Y. (2022). Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals, 15(7), 879. https://doi.org/10.3390/ph15070879
  • Yoshie Ishikawa, T.I. (2014). Boron carbide particle as a boron compound for boron neutron capture therapy. Journal of Nuclear Medicine and Radiation Therapy, 5(2), 1-5. https://doi.org/10.4172/2155-9619.1000177
  • Zheng, Z., Chen, B., Fritz, N., Gurumukhi, Y., Cook, J., Ates, M.N., Miljkovic, N., Braun, P.V., Wang, P. (2020). The Impact of non-uniform metal scaffolds on the performance of 3D structured silicon anodes. Journal of Energy Storage, 30, 101502. https://doi.org/10.1016/j.est.2020.101502
APA ÖKSÜZ K (2023). Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. , 65 - 75. 10.53501/rteufemud.1293580
Chicago ÖKSÜZ Kerim Emre Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. (2023): 65 - 75. 10.53501/rteufemud.1293580
MLA ÖKSÜZ Kerim Emre Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. , 2023, ss.65 - 75. 10.53501/rteufemud.1293580
AMA ÖKSÜZ K Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. . 2023; 65 - 75. 10.53501/rteufemud.1293580
Vancouver ÖKSÜZ K Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. . 2023; 65 - 75. 10.53501/rteufemud.1293580
IEEE ÖKSÜZ K "Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications." , ss.65 - 75, 2023. 10.53501/rteufemud.1293580
ISNAD ÖKSÜZ, Kerim Emre. "Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications". (2023), 65-75. https://doi.org/10.53501/rteufemud.1293580
APA ÖKSÜZ K (2023). Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 4(2), 65 - 75. 10.53501/rteufemud.1293580
Chicago ÖKSÜZ Kerim Emre Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 4, no.2 (2023): 65 - 75. 10.53501/rteufemud.1293580
MLA ÖKSÜZ Kerim Emre Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.4, no.2, 2023, ss.65 - 75. 10.53501/rteufemud.1293580
AMA ÖKSÜZ K Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2023; 4(2): 65 - 75. 10.53501/rteufemud.1293580
Vancouver ÖKSÜZ K Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2023; 4(2): 65 - 75. 10.53501/rteufemud.1293580
IEEE ÖKSÜZ K "Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications." Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 4, ss.65 - 75, 2023. 10.53501/rteufemud.1293580
ISNAD ÖKSÜZ, Kerim Emre. "Macro-Porous Aluminum Oxide-Boron Carbide Ceramics for Hard Tissue Applications". Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 4/2 (2023), 65-75. https://doi.org/10.53501/rteufemud.1293580