Yıl: 2023 Cilt: 13 Sayı: 4 Sayfa Aralığı: 876 - 882 Metin Dili: İngilizce DOI: 10.33808/clinexphealthsci.1216743 İndeks Tarihi: 07-01-2024

In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements

Öz:
Objective: To evaluate the shear bond strength (SBS) of yttrium-stabilized tetragonal zirconia polycrystals bonded to titanium alloys via different surface treatment methods using four different cements. Methods: Eighty titanium and monolithic zirconia discs were prepared with computer-aided design/manufacturing (CAD/CAM) technology. All titanium discs and 40 of monolithic zirconia discs were polished by using silicon carbide paper and sandblasted with 50 μm aluminum oxide (Al2O3). Tribochemical silica coating was applied to remaining 40 monolithic zirconia discs. The monolithic zirconia discs were divided into eight groups after surface treatment (n=10). Titanium discs were cemented using conventional glass ionomer cement (GIC), resin-modified GIC, self- adhesive resin cement, and dual-cure resin cement. The SBS test was performed using a universal testing machine. The failure patterns were examined by using a scanning electron microscope (SEM). Data were statistically analyzed with one-way analysis of variance (ANOVA), two-way ANOVA and Tukey’s test (α<.05). Results: The SBS values differed according to the surface treatment methods and cements used (p<.001). The highest and lowest SBS values were measured in the tribochemical-silica-coated G-CEM ONE (34.77±5.53 MPa) and Al2O3 sandblasted GC Fuji I (3.30±0.77 MPa) cement groups, respectively. Failure analysis revealed that 41.25%, 31.75% and 25% of the failures were cohesive, adhesive, and combined failures, respectively. Conclusion: The SBS values between the monolithic zirconia and titanium alloy were significantly higher in the resin cement groups containing 10-methacryloyloxydecyl dihydrogen thiophosphate and 10-methacryloyloxydecyl dihydrogen phosphate (p<.05). While adhesive and combined failures were observed at high SBS values, cohesive failures were detected as the bonding values decreased.
Anahtar Kelime: Cements Shear bond strenght Surface roughness Monolithic zirconia Tribochemical silica coating

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Sakaguchi R, Powers J. Craig’s restorative dental materials. 13th ed. United States: Elsevier Mosby; 2012.
  • [2] Jung RE, Sailer I, Hammerle C, Attin T, Schmidlin P. In vitro color changes of soft tissues caused by restorative materials. Int J Periodont Restor Dent. 2007;27(3):251-257. DOI: 10.11607/ prd.00.0745
  • [3] Abi-Rached Fde O, Fonseca RG, Haneda IG, de Almeida-Junior AA, Adabo GL. The effect of different surface treatments on the shear bond strength of luting cements to titanium. J Prosthet Dent. 2012;108(6):370-376. DOI: 10.1016/S0022- 3913(12)60194-2
  • [4] Almilhatti HJ, Giampaolo ET, Vergani CE, Machado AL, Pavarina AC, Betiol EA. Adhesive bonding of resin composite to various Ni-Cr alloy surfaces using different metal conditioners and a surface modification system. J Prosthodont. 2009;18(8):663- 669. DOI: 10.1111/j.1532-849X.2009.00491.x
  • [5] Elsaka SE. Effect of surface pretreatments on the bonding strength and durability of self-adhesive resin cements to machined titanium. J Prosthet Dent. 2013;109(2):113-120. DOI: 10.1016/S0022-3913(13)60026-8
  • [6] Fawzy AS, El-Askary FS. Effect acidic and alkaline/heat treatments on the bond strength of different luting cements to commercially pure titanium. J Dent. 2009;37(4):255-263. DOI: 10.1016/j.jdent.2008.11.021
  • [7] Fonseca RG, Haneda IG, Adabo GL. Effect of metal primers on bond strength of resin cements to base metals. J Prosthet Dent. 2009;101(4):262-268. DOI:10.1016/S0022-3913(09)60050-0
  • [8] Elshiyab SH, Nawafleh N, Öchsner A, George R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont. 2018;10(1):65- 72. DOI: 10.4047/jap.2018.10.1.65
  • [9] Arjmand N, Boruziniat A, Zakeri M, Mohammadipour HS. Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin. J Adv Prosthodont. 2018;10(3):177-183. DOI: 10.4047/jap.2018.10.3.177
  • [10] Moghaddas MJ, Mohammadipour HS, Daluyi RA, Jahan Nia A. The effect of lithium disilicate ceramic thickness and translucency on shear bond strength of light-cured resin Cement. J Dent Mater Tech. 2017;6(3):108-116. DOI: 10.22038/JDMT.2017.8938
  • [11] Gomes AL, Ramos JC, Santos-del Riego S, Montero J, Albaladejo A. Thermocycling effect on microshear bond strength to zirconia ceramic using Er: YAG and tribochemical silica coating as surface conditioning. Lasers Med Sci. 2015;30(2):787-795. DOI: 10.1007/s10103.013.1433-z
  • [12] Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater. 2004;71(2):381-386. DOI: 10.1002/jbm.b.30097
  • [13] Vu VT, Oh GJ, Lim HP, Yun KD, Ryu SK, Yim, EK, Park SW. Shear bond strength of zirconia to titanium implant using glass bonding. J Nanosci Nanotechnol. 2019;19(2):967-969. DOI: 10.1166/jnn.2019.15913
  • [14] Alovisi M, Scotti N, Comba A, Manzon E, Farina E, Pasqualini D, Cadenaro M. Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. J Prosthodont Res. 2018;62(4):468-472. DOI: 10.1016/j.jpor.2018.06.003
  • [15] Salem RST, Ozkurt-Kayahan Z, Kazazoglu E. In vitro evaluation of shear bond strength of three primer/resin cement systems to monolithic zirconia. Int J Prosthodont. 2019;32(6):519-525. DOI: 10.11607/ijp.6258
  • [16] Turker N, Özarslan MM, Buyukkaplan US, Başar EK. Effect of different surface treatments applied to short zirconia and titanium abutments. Int J Oral Maxillofac Implants. 2020;35(5):948-954. DOI: 10.11607/jomi.8224
  • [17] Guilherme N, Wadhwani C, Zheng C, Chung K-H. Effect of surface treatments on titanium alloy bonding to lithium disilicate glass ceramics. J Prosthet Dent. 2016;116(5):797- 802. DOI: 10.1016/j.prosdent.2016.04.023
  • [18] Madani AS, Astaneh PA, Nakhaei M, Bagheri HG, Moosavi H, Alavi S, Najjaran NT. Effectiveness of silica-lasing method on the bond strength of composite resin repair to Ni-Cr alloy. J Prosthodont. 2015;24(3):225-232. DOI: 10.1111/jopr.12200
  • [19] Ohkubo C, Watanabe I, Hosoi T, Okabe T. Shear bond strengths of polymethyl methacrylate to cast titanium and cobalt-chromium frameworks using five metal primers. J Prosthet Dent. 2000;83(1):50-57. DOI: 10.1016/S0022- 3913(00)70088-6
  • [20] Forsten L. Short-and long-term fluoride release from glass ionomers and other fluoride-containing filling materials in vitro. Eur J Oral Sci. 1990;98(2):179-185. DOI: 10.1111/j.1600- 0722.1990.tb00958.x
  • [21] Blatz MB, Sadan A, Martin J, Lang B. In vitro evaluation of shear bond strengths of resin to densely -sintered high- purity zirconium-oxide ceramic after long-term storage and thermalcycling. J Prosthet Dent. 2004;91(4):356-362. DOI: 10.1016/j.prosdent.2004.02.001
  • [22] Bitter K, Priehn K, Martus P, Kielbassa AM. In vitro evaluation of push-out bond strengths of various luting agents tooth- colored posts. J Prosthet Dent. 2006;95(4):302-310. DOI: 10.1016/j.prosdent.2006.02.012
  • [23] Valandro LF, Ozcan M, Bottino MC, Bottino MA, Scotti R, Bona AD. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning. J Adhes Dent. 2006;8(3):175-181. DOI: 10.3290/j. jad.a11226
  • [24] Elsaka SE. Influence of surface treatment on the bond strength of resin cements to monolithic zirconia. J Adhes Dent. 2016;18(5):387-395. DOI: 10.3290/j.jad.a36517
  • [25] Bavbek NC, Roulet JF, Ozcan M. Evaluation of microshear bond strength of orthodontic resin cement to monolithic zirconium oxide as a function of surface conditioning method. J Adhes Dent. 2014;16(5):473-480. DOI: 10.3290/j.jad.a32812
  • [26] Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent. 2006;95(6):430-436. DOI: 10.1016/j.prosdent.2006.03.016
  • [27] Ozcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J Adhes Dent. 2015;17(1):7-26. DOI: 10.3290/j.jad.a33525
  • [28] Oyague RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater. 2009;25(2):172-179. DOI: 10.1016/j. dental.2008.05.012
  • [29] Jin XZ, Homaei E, Matinlinna JP, Tsoi JKH. A new concept and finite-element study on dental bond strength tests. Dent Mater. 2016;32(10):238-250. DOI: 10.1016/j.dental.2016.07.005
  • [30] Maghami E, Homaei E, Farhangdoost K, Pow EHN, Matinlinna JP, Tsoi JK. Effect of preparation design for all-ceramic restoration on maxillary premolar: A 3D finite element study. J Prosthodont Res. 2018;62(4):436-442. DOI: 10.1016/j. jpor.2018.04.002
  • [31] Homae E, Jin XZ, Pow EHN, Matinlinna JP, Tsoi JK, Farhangdoost K. Numerical fatigue analysis of premolars restored by CAD/ CAM ceramic crowns. Dent Mater. 2018;34(7):149-157. DOI: 10.1016/j.dental.2018.03.017
  • [32] Carrabba M, Nagasawa Y, Parrini S, Doldo T, Wood D, Ferrari M. Zirconia translucency and cement systems as factors influencing the zirconia-titanium and zirconia-zirconia shear bond strength. Int J Oral and Maxillofac Implants. 2019;34(5):1053-1058. DOI: 10.11607/jomi.7212
  • [33] Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger J Clin Pract. 2019;22(11):1475-1482. DOI: 10.4103/njcp.njcp_157_19
  • [34] Śmielak B, Gołębiowski M, Klimek L. The influence of abutment surface treatment and the type of luting cement on shear bond strength between titanium/cement/zirconia. Adv Mater Sci Eng. 2015(2);1-8. DOI:10.1155/2015/826794
APA ÇAKIR G, şanıvar abbasgholizadeh z, Aslan Y (2023). In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. , 876 - 882. 10.33808/clinexphealthsci.1216743
Chicago ÇAKIR Gülay,şanıvar abbasgholizadeh zeliha,Aslan Yılmaz Umut In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. (2023): 876 - 882. 10.33808/clinexphealthsci.1216743
MLA ÇAKIR Gülay,şanıvar abbasgholizadeh zeliha,Aslan Yılmaz Umut In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. , 2023, ss.876 - 882. 10.33808/clinexphealthsci.1216743
AMA ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. . 2023; 876 - 882. 10.33808/clinexphealthsci.1216743
Vancouver ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. . 2023; 876 - 882. 10.33808/clinexphealthsci.1216743
IEEE ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y "In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements." , ss.876 - 882, 2023. 10.33808/clinexphealthsci.1216743
ISNAD ÇAKIR, Gülay vd. "In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements". (2023), 876-882. https://doi.org/10.33808/clinexphealthsci.1216743
APA ÇAKIR G, şanıvar abbasgholizadeh z, Aslan Y (2023). In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. Clinical and Experimental Health Sciences, 13(4), 876 - 882. 10.33808/clinexphealthsci.1216743
Chicago ÇAKIR Gülay,şanıvar abbasgholizadeh zeliha,Aslan Yılmaz Umut In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. Clinical and Experimental Health Sciences 13, no.4 (2023): 876 - 882. 10.33808/clinexphealthsci.1216743
MLA ÇAKIR Gülay,şanıvar abbasgholizadeh zeliha,Aslan Yılmaz Umut In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. Clinical and Experimental Health Sciences, vol.13, no.4, 2023, ss.876 - 882. 10.33808/clinexphealthsci.1216743
AMA ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. Clinical and Experimental Health Sciences. 2023; 13(4): 876 - 882. 10.33808/clinexphealthsci.1216743
Vancouver ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements. Clinical and Experimental Health Sciences. 2023; 13(4): 876 - 882. 10.33808/clinexphealthsci.1216743
IEEE ÇAKIR G,şanıvar abbasgholizadeh z,Aslan Y "In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements." Clinical and Experimental Health Sciences, 13, ss.876 - 882, 2023. 10.33808/clinexphealthsci.1216743
ISNAD ÇAKIR, Gülay vd. "In Vitro Investigation of Shear Bond Strength of Titanium Alloy Bonded to Monolithic Zirconia Prepared Via Different Surface Roughening Methods Using Different Cements". Clinical and Experimental Health Sciences 13/4 (2023), 876-882. https://doi.org/10.33808/clinexphealthsci.1216743