Yıl: 2024 Cilt: 7 Sayı: 1 Sayfa Aralığı: 51 - 56 Metin Dili: İngilizce DOI: 10.47115/bsagriculture.1388562 İndeks Tarihi: 20-01-2024

Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition

Öz:
This study aims to assess the total phenolic and ascorbic acid contents, antioxidant capacity, and fatty acid profile, as well as nutrient content estimation of the cherry laurel (Laurocerasus officinalis Roemer) unshelled kernel (CLUK) that is considered to have the potential to improve product quality and general health in poultry nutrition. The CLUK blend obtained from fruit collected to represent cherry laurel produced in Türkiye was dried, unshelled, and ground to pass through a 1-mm sieve. This CLUK blend was analyzed according to the relevant method of each parameter to describe assessment results. The crude protein, ether extract, neutral detergent fiber, and acid detergent fiber contents of the CLUK blend were recorded to be 28.94, 34.55, 26.25, and 36.70%, respectively. The ferric reducing antioxidant power (FRAP), the radical-scavenging potencies such as DPPH (2.2-diphenyl-1-picrylhydrazyl), and ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) were 139.84, 11.79, and 8.00 µg trolox equivalents mg-1, respectively. A total phenolic of 3.31 mg gallic acid equivalent g-1 and ascorbic acid of 1.57% contents was determined for the CLUK blend. The primary fatty acids for the CLUK blend were identified as oleic (66.61%), linoleic (15.61%), and palmitic (11.78%). These results reveal that the studied CLUK blend has the potential for quality, healthy, and eco-friendly poultry production.
Anahtar Kelime: Hard stone fruit kernel Radical-scavenging potency Phenolic content Fatty acid profile Antioxidative potential Feed ingredient and additive

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • AOAC. 2006. Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Arlington, VA, US.
  • Arbouche R, Arbouche F, Arbouche H, Arbouche Y. 2012. Effects of the incorporation of the apricot kernel meal into broiler diets on growth performance. Revue Méd Vét. 163(10): 475-479.
  • Ayaz FA, Kadioglu A, Reunanen M, Var M. 1997. Phenolic acid and fatty acid composition in the fruits of Laurocerasus officinalis Roem. and its cultivars. J Food Compost Anal, 10: 350-357.
  • Ayla S, Okur ME, Gunal MY, Ozdemir EM, Cicek Polat D, Yoltas A, Biceroglu O, Karahuseyinoglu S. 2019. Wound healing effects of methanol extract of Laurocerasus officinalis Roem. Biotech Histochem, 94: 180-188.
  • Barasoglu E. 2022. Determination of fatty acid composition of cherry laurel (Laurocerasus officinalis Roemer) kernel and its use in free range laying hen rations. MSc Thesis, Eskisehir Osmangazi University, Institute of Science and Technology, Eskisehir, Türkiye, pp: 129.
  • Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem, 239(1): 70-76.
  • Beriso Y, Tamir B, Tesfaye E. 2022. Growth performance and feed utilization of Hubbard Classic chickens fed on boiled and sundried mango (Mangifera indica Linn.) seed kernel. Ethiop J Sci Technol, 15(3): 277-292.
  • Beyene G, Niguse M, Berhe A, Arefaine D. 2019. Boiled mango (mangifera indica) seed kernel could replace maize grain in layer’s diet in Northern Ethiopia. J Drylands, 9: 986-995.
  • Beyhan O, Demir T, Yurt B. 2018. Determination of antioxidant activity, phenoliccompounds and biochemical properties of cherry laurel (Laurocerasus officinalis R.) grown in Sakarya Turkey. Bahçe, 47(1): 17-22.
  • Brand Williams W, Cuvelier M, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol, 28: 25-30.
  • Cemeroglu B. 2010. Gıda analizleri. Gıda Teknolojisi Dernegi Yayinlari, No: 34, Ankara, Türkiye.
  • Choudhary P, Devi TB, Tushir S, Kasana RC, Popatrao DS, Narsaiah K. 2023. Mango seed kernel: A bountiful source of nutritional and bioactive compounds. Food Bioproc Tech, 16(2): 289-312.
  • Dhama K, Tiwari R, Khan RU, Chakraborty S, Gopi M, Karthik K, Sunkara LT. 2014. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: The trends and advances- A Review. Int J Pharmacol, 10(3): 129-159.
  • Engin MS. 2007. Effect of the climatic changes on antioxidant activity and fenolic compounds of Laurocerasus officinalis roem. MSc Thesis, Gaziosmanpasa University, Institute of Science, Tokat, Türkiye, pp: 58.
  • Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem, 226(1): 497-509.
  • González-Aguilar G, Robles-Sánchez RM, Martínez-Téllez MA, Olivas GI, Alvarez-Parrilla E, De La Rosa LA. 2008. Bioactive compounds in fruits: health benefits and effect of storage conditions. Stewart Postharvest Rev, 4(3): 1-10.
  • Gungor E, Erener G. 2020. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance, carcass traits and meat quality in broiler chickens. Poult Sci, 99: 301-309.
  • Hasted TL, Sharif S, Boerlin P, Diarra MS. 2021. Immunostimulatory potential of fruits and their extracts in poultry. Front Immunol, 12: 641696.
  • Ibrahim UK, Kamarrudin N, Suzihaque MUH, Abd Hashib S. 2017. Local fruit wastes as a potential source of natural antioxidant: an overview. IOP Conf Ser Mater Sci Eng, 206(1): 012040.
  • Islam R, Hassan YI, Dasa Q, Leppa D, Hernandeza M, Godfrey DV. 2020. Dietary organic cranberry pomace influences multiple blood biochemical parameters and cecal microbiota in pasture-raised broiler chickens. J Funct Foods, 72: 1-13.
  • Jazi V, Boldaji F, Dastar B, Hashemi SR, Ashayerizadeh A. 2017. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br Poult Sci, 58(4): 402-408.
  • Jideani AI, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. 2021. Antioxidant-rich natural fruit and vegetable products and human health. Int J Food Prop, 24(1): 41-67.
  • Karabacak M, Liman BC. 2015. The Effects of grape seed on lipid peroxidation and haematological parameters in broiler administered ionophore antibiotics. Erciyes Univ J Vet Med, 12(1): 9-17.
  • Karabegović IT, Stojicevic SS, Velickovic DT, Todorovic ZB, Nikolic NC, Lazic ML. 2014. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind Crops Prod, 54: 142-148.
  • Kathirvelan C, Banupriya S, Purushothaman MR. 2015. Azolla-an alternate and sustainable feed for livestock. Int J Sci Environ Technol, 4(4): 1153-1157.
  • Kheiri F, Nasr J. 2013. Effects of different dietary amounts of date kernel meal on growth performance and some carcass traits in broilers. Rev Med Vet, 164(7): 382-387.
  • Kolayli S, Kucuk M, Duran C, Candan F, Dincer B. 2003. Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea Region. J Agric Food Chem., 51(25): 7489-7494.
  • Kop-Bozbay C, Akdag A, Bozkurt-Kiraz A, Gore M, Kurt O, Ocak N. 2021. Laying performance, egg quality characteristics, and egg yolk fatty acids profile in layer hens housed with free access to chicory-and/or white clover-vegetated or non-vegetated areas. Animals, 11(6): 1708.
  • Kovačević DB, Brdar D, Fabečić P, Barba FJ, Lorenzo JM, Putnik P. 2020. Strategies to achieve a healthy and balanced diet: Fruits and vegetables as a natural source of bioactive compounds. U: Agri-Food Industry Strategies Healthy Diets Sustain, 2020: 51-88.
  • Masoudi A, Chaji M, Bojarpour M, Mirzadeh K. 2011. Effects of different levels of date pits on performance, carcass characteristics and blood parameters of broiler chickens. J Appl Anim Res, 39(4): 399-405.
  • Munekata PE, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. 2022. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr, 63(25): 7795-7810.
  • Orhangazi H. 2017. Effects of apricot kernel supplementation to quail diets on performance, egg quality and incubation parameters. MSc Thesis, Namık Kemal University, Institute of Science and Technology, Tekirdağ, Türkiye, pp: 46.
  • Patel A, Shadab K, Bhise KS. 2017. Antifungal and antimicrobial activity of pomegranate peel powder. World J Pharm Res, 6: 1424-1430.
  • Rad AHE, Hashemi N, Gazerani S, Aldaghi BT, Jalali M. 2015. Survey cyanogen glycosides as negative metabolite on food products. Int Res J Appl Basic Sci, 9(2): 147-153.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10): 1231-1237.
  • Rohaida BAR. 2014. Effects of ground candlenut (Aleurites moluccana (L.) Willd.) kernel on growth performance and fatty acid composition in broiler chickens. MSc Thesis, Universiti Putra Malaysia, Institute of Science and Technology, Putra, Malaysia.
  • Seenger J, Nuernberg G, Hartung M, Szűcs E, Ender K, Nuernberg K. 2008. ANKOM-a new instrument for the determination of fat in muscle and meat cuts-a comparison. Arch Anim Breed, 51: 449-457.
  • Singleton VL, Orthofer R, Lamuela Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol, 299:1 52-178.
  • Tareen MH, Wagan R, Siyal FA, Babazadeh D, Bhutto ZA, Arain MA, Saeed M. 2017. Effect of various levels of date palm kernel on growth performance of broilers. Vet World, 2017: 2231-0916.
  • Tejeda OJ, Kim WK. 2021. Role of dietary fiber in poultry nutrition. Animals, 11: 461.
  • Van Soest Pv, Robertson J, Lewis B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci., 74(10): 3583-3597.
  • Yaylaci-Karahalil, F, Sahin, H. 2011. Phenolic composition and antioxidant capacity of cherry laurel (Laurocerasus officinalis Roem.) sampled from Trabzon region, Turkey. Afr J Biotechnol, 10: 16293-16299.
  • Yildiz H, Ercisli S, Narmanlioglu HK, Guclu S, Akbulut M, Turkoglu Z. 2014. The mainquality attributes of non-sprayed cherry laurel (Laurocerasus officinalis Roem.) genotypes. Genetika, 46(1): 129-136.
APA BARASOĞLU E, KOP BOZBAY C (2024). Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. , 51 - 56. 10.47115/bsagriculture.1388562
Chicago BARASOĞLU ESMA,KOP BOZBAY CANAN Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. (2024): 51 - 56. 10.47115/bsagriculture.1388562
MLA BARASOĞLU ESMA,KOP BOZBAY CANAN Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. , 2024, ss.51 - 56. 10.47115/bsagriculture.1388562
AMA BARASOĞLU E,KOP BOZBAY C Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. . 2024; 51 - 56. 10.47115/bsagriculture.1388562
Vancouver BARASOĞLU E,KOP BOZBAY C Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. . 2024; 51 - 56. 10.47115/bsagriculture.1388562
IEEE BARASOĞLU E,KOP BOZBAY C "Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition." , ss.51 - 56, 2024. 10.47115/bsagriculture.1388562
ISNAD BARASOĞLU, ESMA - KOP BOZBAY, CANAN. "Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition". (2024), 51-56. https://doi.org/10.47115/bsagriculture.1388562
APA BARASOĞLU E, KOP BOZBAY C (2024). Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. Black Sea Journal of Agriculture, 7(1), 51 - 56. 10.47115/bsagriculture.1388562
Chicago BARASOĞLU ESMA,KOP BOZBAY CANAN Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. Black Sea Journal of Agriculture 7, no.1 (2024): 51 - 56. 10.47115/bsagriculture.1388562
MLA BARASOĞLU ESMA,KOP BOZBAY CANAN Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. Black Sea Journal of Agriculture, vol.7, no.1, 2024, ss.51 - 56. 10.47115/bsagriculture.1388562
AMA BARASOĞLU E,KOP BOZBAY C Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. Black Sea Journal of Agriculture. 2024; 7(1): 51 - 56. 10.47115/bsagriculture.1388562
Vancouver BARASOĞLU E,KOP BOZBAY C Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition. Black Sea Journal of Agriculture. 2024; 7(1): 51 - 56. 10.47115/bsagriculture.1388562
IEEE BARASOĞLU E,KOP BOZBAY C "Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition." Black Sea Journal of Agriculture, 7, ss.51 - 56, 2024. 10.47115/bsagriculture.1388562
ISNAD BARASOĞLU, ESMA - KOP BOZBAY, CANAN. "Nutrient Content, Antioxidant Capacity, and Fatty Acids Profile of Cherry Laurel (Laurocerasus officinalis Roemer) Unshelled Kernel to Be Used in Poultry Nutrition". Black Sea Journal of Agriculture 7/1 (2024), 51-56. https://doi.org/10.47115/bsagriculture.1388562