Yıl: 2023 Cilt: 53 Sayı: 6 Sayfa Aralığı: 1807 - 1816 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5751 İndeks Tarihi: 18-01-2024

Assessment of changes in macular structural retinal layers in patients with pathological myopia

Öz:
Background/aim: This study aimed to examine changes in the thickness of individual macular retinal layers in eyes with pathological myopia (PM) and to compare the thickness of each retinal layer between the PM and control groups to gain insights into retinal perfusion. Materials and methods: The study included 51 eyes in the PM group and 51 eyes in the control group. Optical coherence tomography (OCT) was used to measure the thickness of each retinal layer in the central fovea, parafoveal, and perifoveal regions. Optical coherence tomography angiography (OCT-A) was used to evaluate the retinal capillary density. Results: In the PM group, the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer (INL) were thicker than in the control group (p = 0.004, p = 0.027, p = 0.020, and p < 0.001, respectively), whereas the outer nuclear layer (ONL) and photoreceptor layer (PRL) were thinner (p = 0.001 and p = 0.003, respectively). In other regions, the RNFL was thicker in the myopic group, whereas the GCL, IPL, INL, and ONL were thinner. OCT-A did not reveal any significant difference between the groups in terms of radial capillary plexus density (p = 0.381); however, the densities of the other plexuses were lower in the PM group. Conclusions: The results showed alterations in the thickness of retinal layers and capillary plexus density in PM. Thus, assessment of the thickness of individual retinal layers may serve as an indicator of vascular diseases that affect the circulation of the retina and choroid.
Anahtar Kelime: Choroid optical coherence tomography optical coherence tomography angiography pathological myopia retinal segmentation analysis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ et al. Potential lost productivity resulting from the global burden of myopia: Systematic review, meta-analysis, and modeling. Ophthalmology 2019; 126 (3): 338-346. https://doi. org/10.1016/j.ophtha.2018.10.029
  • 2. Ludwig CA, Shields RA, Chen TA, Powers MA, Wilkin Parke III D et al. A novel classification of high myopia into anterior and posterior pathologic subtypes. Graefe’s Archive for Clinical and Experimental Ophthalmology 2018; 256 (10): 1847-1856. https://doi.org/10.1007/s00417-018-4071-0
  • 3. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T. Refractive errors in an elderly Japanese population: The Tajimi study. Ophthalmology 2008; 115 (2): 363-370.e3. https://doi. org/10.1016/j.ophtha.2007.03.075
  • 4. Xu L, Li J, Cui T, Hu A, Fan G et al. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology 2005; 112 (10): 1676-1683. https://doi.org/10.1016/j. ophtha.2005.05.015
  • 5. Cotter SA, Varma R, Ying-Lai M, Azen SP, Klein R. Causes of low vision and blindness in adult Latinos: The Los Angeles Latino eye study. Ophthalmology 2006; 113 (9): 1574-1582. https://doi.org/10.1016/j.ophtha.2006.05.002
  • 6. Ohno-Matsui K. Pathologic Myopia. Asia-Pacific Journal of Ophthalmology 2016; 5 (6): 415-423. https://doi.org/10.1097/ APO.0000000000000230
  • 7. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. The Lancet 2012; 379 (9827): 1739-1748. https://doi.org/10.1016/S0140- 6736(12)60272-4
  • 8. Wang NK, Wu YM, Wang JP, Liu L, Yeung L et al. Clinical characteristics of posterior staphylomas in myopic eyes with axial length shorter than 26.5 millimeters. American Journal of Ophthalmology 2016; 162: 180-190.e1. https://doi. org/10.1016/j.ajo.2015.11.016
  • 9. Liu HH, Xu L, Wang YX, Wang S, You QS, Jonas JB. Prevalence and progression of myopic retinopathy in Chinese adults: The Beijing eye study. Ophthalmology 2010; 117 (9): 1763-1768. https://doi.org/10.1016/j.ophtha.2010.01.020
  • 10. Ctori I, Huntjens B. Repeatability of foveal measurements using Spectralis optical coherence tomography segmentation software. PLoS One 2015; 10 (6): e0129005. https://doi. org/10.1371/journal.pone.0129005
  • 11. Kim JH, Lee SH, Han JY, Kang HG, Byeon SH et al. Comparison of individual retinal layer thicknesses between highly myopic eyes and normal control eyes using retinal layer segmentation analysis. Scientific Reports 2019; 9 (1): 14000. https://doi. org/10.1038/s41598-019-50306-w
  • 12. Ye J, Wang M, Shen M, Huang S, Xue A et al. Deep retinal capillary plexus decreasing correlated with the outer retinal layer alteration and visual acuity impairment in pathological myopia. Investigative Ophthalmology & Visual Science 2020; 61 (4): 45. https://doi.org/10.1167/iovs.61.4.45
  • 13. Liu X, Shen M, Yuan Y, Huang S, Zhu D et al. Macular thickness profiles of intraretinal layers in myopia evaluated by ultrahigh- resolution optical coherence tomography. American Journal of Ophthalmology 2015; 160 (1): 53-61.e2.https://doi.org/10.1016/j. ajo.2015.03.012
  • 14. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ et al. Detailed vascular anatomy of the human retina by projection- resolved optical coherence tomography angiography. Scientific Reports 2017; 7: 42201. https://doi.org/10.1038/srep42201
  • 15. Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM et al. META-analysis for pathologic myopia (META-PM) study group. International photographic classification and grading system for myopic maculopathy. American Journal of Ophthalmology 2015; 159 (5): 877-883.e7. https://doi.org/10.1016/j.ajo.2015.01.022
  • 16. Lutty GA, McLeod DS. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Progress in Retinal and Eye Research 2018; 62: 58-76. https://doi.org/10.1016/j. preteyeres.2017.10.001
  • 17. Yildirim Y, Kaya A, Kar T. Temperature control role of the choroid may affect choroidal thickness after dynamic exercise. Indian Journal of Ophthalmology 2015; 63 (12): 930. https://doi. org/10.4103/0301-4738.176033
  • 18. Ivanova E, Toychiev AH, Yee CW, Sagdullaev BT. Intersublaminar vascular plexus: the correlation of retinal blood vessels with functional sublaminae of the inner plexiform layer. Investigative Ophthalmology & Visual Science 2014; 55 (1): 78-86. https://doi. org/10.1167/iovs.13-13196
  • 19. Hasegawa T, Okamoto M, Masuda N, Ueda T, Ogata N. Relationship between foveal microstructures and visual outcomes in eyes with resolved central serous chorioretinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology 2015; 253 (3): 343-350. https://doi.org/10.1007/s00417-014-2695-2
  • 20. Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Sayman Muslubas I. Outer nuclear layer thinning in pachychoroid pigment epitheliopathy. Retina 2018; 38 (5): 957-961. https://doi. org/10.1097/IAE.0000000000001655
  • 21. Jonas JB, Xu L. Histological changes of high axial myopia. Eye 2014; 28 (2): 113-117. https://doi.org/10.1038/eye.2013.223 22. Teberik K, Kaya M. Retinal and choroidal thickness in patients with high myopia without maculopathy. Pakistan Journal of Medical Sciences 2017; 33 (6): 1438-1443. https://doi. org/10.12669/pjms.336.13726
  • 23. Abbott CJ, Grünert U, Pianta MJ, McBrien NA. Retinal thinning in tree shrews with induced high myopia: optical coherence tomography and histological assessment. Vision Research 2011; 51 (3): 376-385. https://doi.org/10.1016/j.visres.2010.12.005
  • 24. Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS et al. Regional variations in the relationship between macular thickness measurements and myopia. Investigative Ophthalmology & Visual Science 2007; 48 (1): 376-382. https:// doi.org/10.1167/iovs.06-0426
  • 25. Sato A, Fukui E, Ohta K. Retinal thickness of myopic eyes determined by Spectralis optical coherence tomography. British Journal of Ophthalmology 2010; 94 (12): 1624-1628. https:// doi.org/10.1136/bjo.2009.165472
  • 26. Ng DS, Cheung CY, Luk FO, Mohamed S, Brelen ME et al. Advances of optical coherence tomography in myopia and pathologic myopia. Eye 2016; 30 (7): 901-916. https://doi. org/10.1038/eye.2016.47
  • 27. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: Findings from a population-based study of 6-year-old children. Investigative Ophthalmology & Visual Science 2006; 47 (6): 2351-2357. https://doi.org/10.1167/iovs.05-1396
  • 28. Li M, Yang Y, Jiang H, Gregori G, Roisman L et al. Retinal microvascular network and microcirculation assessments in high myopia. American Journal of Ophthalmology 2017; 174: 56-67. https://doi.org/10.1016/j.ajo.2016.10.018
  • 29. Mo J, Duan AL, Chan SY, Wang XF, Wei WB. Application of optical coherence tomography angiography in assessment of posterior scleral reinforcement for pathologic myopia. International Journal of Ophthalmology 2016; 9 (12): 1761- 1765. https://doi.org/10.18240/ijo.2016.12.10
  • 30. Wang T, Li H, Zhang R, Yu Y, Xiao X et al. Evaluation of retinal vascular density and related factors in youth myopia without maculopathy using OCTA. Scientific Reports 2021; 11 (1): 15361. https://doi.org/10.1038/s41598-021-94909-8
  • 31. Ye J, Lin J, Shen M, Chen W, Zhang R et al. Reduced radial peripapillary capillary in pathological myopia is correlated with visual acuity. Frontiers in Neuroscience 2022; 16: 818530. https://doi.org/10.3389/fnins.2022.818530
APA CITIRIK M, yavuzer k, Bagci F (2023). Assessment of changes in macular structural retinal layers in patients with pathological myopia. , 1807 - 1816. 10.55730/1300-0144.5751
Chicago CITIRIK Mehmet,yavuzer kamil,Bagci Fatma Assessment of changes in macular structural retinal layers in patients with pathological myopia. (2023): 1807 - 1816. 10.55730/1300-0144.5751
MLA CITIRIK Mehmet,yavuzer kamil,Bagci Fatma Assessment of changes in macular structural retinal layers in patients with pathological myopia. , 2023, ss.1807 - 1816. 10.55730/1300-0144.5751
AMA CITIRIK M,yavuzer k,Bagci F Assessment of changes in macular structural retinal layers in patients with pathological myopia. . 2023; 1807 - 1816. 10.55730/1300-0144.5751
Vancouver CITIRIK M,yavuzer k,Bagci F Assessment of changes in macular structural retinal layers in patients with pathological myopia. . 2023; 1807 - 1816. 10.55730/1300-0144.5751
IEEE CITIRIK M,yavuzer k,Bagci F "Assessment of changes in macular structural retinal layers in patients with pathological myopia." , ss.1807 - 1816, 2023. 10.55730/1300-0144.5751
ISNAD CITIRIK, Mehmet vd. "Assessment of changes in macular structural retinal layers in patients with pathological myopia". (2023), 1807-1816. https://doi.org/10.55730/1300-0144.5751
APA CITIRIK M, yavuzer k, Bagci F (2023). Assessment of changes in macular structural retinal layers in patients with pathological myopia. Turkish Journal of Medical Sciences, 53(6), 1807 - 1816. 10.55730/1300-0144.5751
Chicago CITIRIK Mehmet,yavuzer kamil,Bagci Fatma Assessment of changes in macular structural retinal layers in patients with pathological myopia. Turkish Journal of Medical Sciences 53, no.6 (2023): 1807 - 1816. 10.55730/1300-0144.5751
MLA CITIRIK Mehmet,yavuzer kamil,Bagci Fatma Assessment of changes in macular structural retinal layers in patients with pathological myopia. Turkish Journal of Medical Sciences, vol.53, no.6, 2023, ss.1807 - 1816. 10.55730/1300-0144.5751
AMA CITIRIK M,yavuzer k,Bagci F Assessment of changes in macular structural retinal layers in patients with pathological myopia. Turkish Journal of Medical Sciences. 2023; 53(6): 1807 - 1816. 10.55730/1300-0144.5751
Vancouver CITIRIK M,yavuzer k,Bagci F Assessment of changes in macular structural retinal layers in patients with pathological myopia. Turkish Journal of Medical Sciences. 2023; 53(6): 1807 - 1816. 10.55730/1300-0144.5751
IEEE CITIRIK M,yavuzer k,Bagci F "Assessment of changes in macular structural retinal layers in patients with pathological myopia." Turkish Journal of Medical Sciences, 53, ss.1807 - 1816, 2023. 10.55730/1300-0144.5751
ISNAD CITIRIK, Mehmet vd. "Assessment of changes in macular structural retinal layers in patients with pathological myopia". Turkish Journal of Medical Sciences 53/6 (2023), 1807-1816. https://doi.org/10.55730/1300-0144.5751