Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü

Yıl: 2023 Cilt: 11 Sayı: 28 Sayfa Aralığı: 287 - 309 Metin Dili: Türkçe DOI: 10.7816/nesne-11-28-07 İndeks Tarihi: 20-01-2024

Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü

Öz:
Obeziteye bağlı sağlık sorunlarının mevcut önleme ve tedavi yaklaşımlarının yetersizliği, alternatif terapötik yöntemlerin arayışını beraberinde getirmiştir. Bu derleme, obezitenin neden olduğu nörobiyolojik ve davranışsal değişikliklerde, doymamış yağ asitlerinin (n-3 PUFA) kullanımının, bu değişiklikleri önlemede ve mevcut tedavi yöntemlerini tamamlamada nasıl katkı sağlayabileceğini anlamak amacıyla, ilgili bilimsel kanıtları sunmuştur. Derlemede, yüksek yağlı diyetlerle indüklenen obezite ve maternal obezite çalışmaları üzerine odaklanarak, sadece kemirgenler üzerindeki çalışmalar ele alınmıştır. Obezitedeki ilk değişikliklerin periferik dokularda gözlemlenmesine karşın, çalışmalar obezitenin beyinde de çeşitli bozukluklara yol açabileceğini göstermektedir. Omega-3 çoklu doymamış yağ asitlerinin kullanımı, anti-enflamatuar etkisi, mezokortikolimbik ve endokannabinoid yollar üzerindeki kritik rolü ve beyindeki ilgili değişiklikleri düzeltebilecek potansiyeli nedeniyle önemli bir strateji olarak öne çıkmaktadır. Bu bağlamda, ilk olarak, periferik dokularda ve merkezi sinir sisteminde meydana gelen değişiklikler de dahil olmak üzere obezite patofizyolojisinin kısa bir tanımı sunulmaktadır. Sonrasında, n-3 PUFA'nın genel etkileri açıklanmaktadır. Ayrıca, obezite ve n-3 PUFA'yı birbirine bağlayan endokannabinoid ve beyindeki dopaminerjik ödül sistemleri ve nöroinflamasyon üzerindeki etkileri incelenmektedir. Derlememiz, obezite ile ilişkili beyin değişikliklerinin n-3 PUFA'nın etkisi altında nasıl değişebileceğine dair yeni bakış açıları sunarak alana özgün bir katkı sağlamayı amaçlamaktadır
Anahtar Kelime: obezite n-3 PUFA omega beyin kemirgen

The Role of Omega-3 Fatty Acids in Obesity-Related Neurobiological and Behavioral Changes

Öz:
The inadequacy of current prevention and treatment approaches for health issues related to obesity has led to the search for alternative therapeutic methods. This review paper aims to provide relevant scientific evidence to understand how the utilization of polyunsaturated fatty acids (n-3 PUFA), specifically omega-3, can contribute to preventing these changes and complementing existing treatment methods in the context of neurobiological and behavioral alterations caused by obesity. Focusing on studies involving high-fat diet-induced obesity and maternal obesity, the review specifically addresses research conducted on rodents. While the initial changes in obesity are observed in peripheral tissues, studies indicate that obesity can also lead to various disorders in the brain. The utilization of omega-3 polyunsaturated fatty acids stands out as an important strategy due to their anti-inflammatory effects, critical role in mesocorticolimbic and endocannabinoid pathways, and potential to correct relevant changes in the brain. In this context, the review first provides a brief description of obesity pathophysiology, including changes occurring in peripheral tissues and the central nervous system. Subsequently, the general effects of n-3 PUFA are elucidated. Furthermore, the effects of n-3 PUFA on the endocannabinoid system linking obesity and n-3 PUFA, as well as their impact on brain dopaminergic reward systems and neuroinflammation, are examined. By offering new perspectives on how obesity-related brain changes can be altered under the influence of n-3 PUFA, our review aims to contribute a unique insight to the field.
Anahtar Kelime: obesity n-3 PUFA omega brain rodent

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abdel-Maksoud, S. M., Hassanein, S. I., Gohar, N. A., Attia, S. M. M. ve Gad, M. Z. (2017). Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids. Nutritional Neuroscience, 20(8), 443–448. https://doi.org/10.1080/1028415X.2016.1180859
  • Agrawal, R. ve Gomez-Pinilla, F. (2012). 'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. The Journal of Physiology, 590(10), 2485–2499. https://doi.org/10.1113/jphysiol.2012.230078
  • Ahima, R. S. ve Antwi, D. A. (2008). Brain regulation of appetite and satiety. Endocrinology and Metabolism Clinics of North America, 37(4), 811–823. https://doi.org/10.1016/j.ecl.2008.08.005
  • Artmann, A., Petersen, G., Hellgren, L. I., Boberg, J., Skonberg, C., Nellemann, C., Hansen, S. H. ve Hansen, H. S. (2008). Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochimica et Biophysica Acta, 1781(4), 200–212. https://doi.org/10.1016/j.bbalip.2008.01.006
  • Auguste, S., Sharma, S., Fisette, A., Fernandes, M. F., Daneault, C., Des Rosiers, C. ve Fulton, S. (2018). Perinatal deficiency in dietary omega-3 fatty acids potentiates sucrose reward and diet-induced obesity in mice. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 64, 8–13. https://doi.org/10.1016/j.ijdevneu.2017.09.003
  • Banni, S. ve Di Marzo, V. (2010). Effect of dietary fat on endocannabinoids and related mediators: Consequences on energy homeostasis, inflammation and mood. Molecular Nutrition & Food Research, 54(1), 82–92. https://doi.org/10.1002/mnfr.200900516
  • Bargut, T. C., Mandarim-de-Lacerda, C. A. ve Aguila, M. B. (2015). A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. The Journal of Nutritional Biochemistry, 26(9), 960–969. https://doi.org/10.1016/j.jnutbio.2015.04.002
  • Barks, J. D., Liu, Y., Shangguan, Y., Djuric, Z., Ren, J. ve Silverstein, F. S. (2017). Maternal high-fat diet influences outcomes after neonatal hypoxic-ischemic brain injury in rodents. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 37(1), 307–318. https://doi.org/10.1177/0271678X15624934
  • Batetta, B., Griinari, M., Carta, G., Murru, E., Ligresti, A., Cordeddu, L., Giordano, E., Sanna, F., Bisogno, T., Uda, S., Collu, M., Bruheim, I., Di Marzo, V. ve Banni, S. (2009). Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. The Journal of Nutrition, 139(8), 1495–1501. https://doi.org/10.3945/jn.109.104844
  • Bauché, F., Sabourault, D., Giudicelli, Y., Nordmann, J. ve Nordmann, R. (1981). 2-Mercaptoacetate administration depresses the beta-oxidation pathway through an inhibition of long-chain acyl-CoA dehydrogenase activity. The Biochemical Journal, 196(3), 803–809. https://doi.org/10.1042/bj1960803
  • Bazinet, R. P.ve Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature reviews. Neuroscience, 15(12), 771–785. https://doi.org/10.1038/nrn3820
  • Berridge K. C. (2009). 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537–550. https://doi.org/10.1016/j.physbeh.2009.02.044
  • Bourre J. M. (2004). Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. The Journal of Nutrition, Health & Aging, 8(3), 163–174.
  • Buettner, R., Schölmerich, J. ve Bollheimer, L. C. (2007). High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring, Md.), 15(4), 798–808. https://doi.org/10.1038/oby.2007.608
  • Calder P. C. (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105–1115. https://doi.org/10.1042/BST20160474
  • Campfield, L. A. ve Smith, F. J. (1986). Functional coupling between transient declines in blood glucose and feeding behavior: Temporal relationships. Brain Research Bulletin, 17(3), 427–433. https://doi.org/10.1016/0361-9230(86)90250-9
  • Cascio M. G. (2013). PUFA-derived endocannabinoids: An overview. The Proceedings of the Nutrition Society, 72(4), 451–459. https://doi.org/10.1017/S0029665113003418
  • Castanon, N., Lasselin, J. ve Capuron, L. (2014). Neuropsychiatric comorbidity in obesity: Role of inflammatory processes. Frontiers in Endocrinology, 5, 74. https://doi.org/10.3389/fendo.2014.00074
  • Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75(4-5), 259–269. https://doi.org/10.1016/j.plefa.2006.07.005
  • Chalon, S., Vancassel, S., Zimmer, L., Guilloteau, D. ve Durand, G. (2001). Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids, 36(9), 937–944. https://doi.org/10.1007/s11745-001-0804-7
  • Cintra, D. E., Ropelle, E. R., Moraes, J. C., Pauli, J. R., Morari, J., Souza, C. T., Grimaldi, R., Stahl, M., Carvalheira, J. B., Saad, M. J. ve Velloso, L. A. (2012). Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PloS One, 7(1), e30571. https://doi.org/10.1371/journal.pone.0030571
  • Citrome L. (2019). Binge eating disorder revisited: What's new, what's different, what's next. CNS Spectrums, 24(S1), 4–13. https://doi.org/10.1017/S1092852919001032
  • Convit A. (2012). Obesity is associated with structural and functional brain abnormalities: Where do we go from here?. Psychosomatic Medicine, 74(7), 673–674. https://doi.org/10.1097/PSY.0b013e3182662c56
  • D'Asti, E., Long, H., Tremblay-Mercier, J., Grajzer, M., Cunnane, S. C., Di Marzo, V. ve Walker, C. D. (2010). Maternal dietary fat determines metabolic profile and the magnitude of endocannabinoid inhibition of the stress response in neonatal rat offspring. Endocrinology, 151(4), 1685–1694. https://doi.org/10.1210/en.2009-1092
  • de Andrade, A. M., Fernandes, M. D. C., de Fraga, L. S., Porawski, M., Giovenardi, M. ve Guedes, R. P. (2017). Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats. Metabolic Brain Disease, 32(6), 1871–1881. https://doi.org/10.1007/s11011-017-0080-7
  • de Mello, A. H., Schraiber, R. B., Goldim, M. P. S., Garcez, M. L., Gomes, M. L., de Bem Silveira, G., Zaccaron, R. P., Schuck, P. F., Budni, J., Silveira, P. C. L., Petronilho, F. ve Rezin, G. T. (2019). Omega-3 Fatty Acids Attenuate Brain Alterations in High-Fat Diet-Induced Obesity Model. Molecular Neurobiology, 56(1), 513–524. https://doi.org/10.1007/s12035-018-1097-6
  • Deane, K. H. O., Jimoh, O. F., Biswas, P., O'Brien, A., Hanson, S., Abdelhamid, A. S., Fox, C. ve Hooper, L. (2021). Omega-3 and polyunsaturated fat for prevention of depression and anxiety symptoms: Systematic review and meta-analysis of randomised trials. The British Journal of Psychiatry: The Journal of Mental Science, 218(3), 135–142. https://doi.org/10.1192/bjp.2019.234
  • Dearden, L. ve Balthasar, N. (2014). Sexual dimorphism in offspring glucose-sensitive hypothalamic gene expression and physiological responses to maternal high-fat diet feeding. Endocrinology, 155(6), 2144–2154. https://doi.org/10.1210/en.2014-1131
  • Demers, G., Roy, J., Machuca-Parra, A. I., Dashtehei Pour, Z., Bairamian, D., Daneault, C., Rosiers, C. D., Ferreira, G., Alquier, T., Fulton, S. ve Representative of consortium (2020). Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice. International Journal of Obesity, 44(9), 1936–1945. https://doi.org/10.1038/s41366-020-0623-6 Di Marzo V. (2008). Endocannabinoids: Synthesis and degradation. Reviews of Physiology, Biochemistry and Pharmacology, 160, 1–24. https://doi.org/10.1007/112_0505
  • Di Marzo, V., Griinari M., Carta G., vd.. (2010). Dietary krill oil increases docosahexaenoic acid and reduces 2-arachidonoylglycerol but not N-acylethanolamine levels in the brain of obese Zucker rats. Int Dairy J, (20), 231-235. https://doi.org/10.1016/j.idairyj.2009.11.015
  • Drougard, A., Fournel, A., Valet, P. ve Knauf, C. (2015). Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Frontiers in Neuroscience, 9, 56. https://doi.org/10.3389/fnins.2015.00056
  • Elphick M. R. (2012). The evolution and comparative neurobiology of endocannabinoid signalling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1607), 3201–3215. https://doi.org/10.1098/rstb.2011.0394
  • Fan, R., Hua, Y., Shen, J., Xiao, R. ve Ma, W. (2022). Dietary fatty acids affect learning and memory ability via regulating inflammatory factors in obese mice. The Journal of Nutritional Biochemistry, 103, 108959. https://doi.org/10.1016/j.jnutbio.2022.108959
  • Farooqui A. A. (2012). N-3 fatty acid-derived lipid mediators in the brain: New weapons against oxidative stress and inflammation. Current Medicinal Chemistry, 19(4), 532–543. https://doi.org/10.2174/092986712798918851
  • Fedorova, I. ve Salem, N., Jr (2006). Omega-3 fatty acids and rodent behavior. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75(4-5), 271–289. https://doi.org/10.1016/j.plefa.2006.07.006
  • Friedman, M. I. ve Stricker, E. M. (1976). The physiological psychology of hunger: A physiological perspective. Psychological Review, 83(6), 409–431. https://doi.org/10.1037/0033-295X.83.6.409
  • Fulton S. (2010). Appetite and reward. Frontiers in Neuroendocrinology, 31(1), 85–103. https://doi.org/10.1016/j.yfrne.2009.10.003
  • Gao, H., Geng, T., Huang, T. ve Zhao, Q. (2017). Fish oil supplementation and insulin sensitivity: A systematic review and meta-analysis. Lipids in Health and Disease, 16(1), 131. https://doi.org/10.1186/s12944-017-0528-0
  • Golub, N., Geba, D., Mousa, S. A., Williams, G.ve Block, R. C. (2011). Greasing the wheels of managing overweight and obesity with omega-3 fatty acids. Medical Hypotheses, 77(6), 1114–1120. https://doi.org/10.1016/j.mehy.2011.09.016
  • Hotamisligil G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867. https://doi.org/10.1038/nature05485
  • Howie, G. J., Sloboda, D. M., Reynolds, C. M. ve Vickers, M. H. (2013). Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: Same metabolic phenotype, different developmental pathways?. Journal of Nutrition and Metabolism, 2013, 517384. https://doi.org/10.1155/2013/517384
  • Johnson, A. R., Milner, J. J. ve Makowski, L. (2012). The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunological Reviews, 249(1), 218–238. https://doi.org/10.1111/j.1600-065X.2012.01151.x
  • Kapoor, B., Kapoor, D., Gautam, S., Singh, R. ve Bhardwaj, S. (2021). Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Current Nutrition Reports, 10(3), 232–242. https://doi.org/10.1007/s13668-021-00363-3
  • Kislal, S., Jin, W., Maesner, C. ve Edlow, A. G. (2021). Mismatch between obesogenic intrauterine environment and low-fat postnatal diet may confer offspring metabolic advantage. Obesity Science & Practice, 7(4), 450–461. https://doi.org/10.1002/osp4.501
  • Kislal, S., Shook, L. L. ve Edlow, A. G. (2020). Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenatal Diagnosis, 40(9), 1109–1125. https://doi.org/10.1002/pd.5784
  • Layé, S., Nadjar, A., Joffre, C. ve Bazinet, R. P. (2018). Anti-inflammatory effects of omega-3 fatty acids in the brain: Physiological mechanisms and relevance to pharmacology. Pharmacological Reviews, 70(1), 12–38. https://doi.org/10.1124/pr.117.014092
  • Lee, J. M., Lee, H., Kang, S. ve Park, W. J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients, 8(1), 23. https://doi.org/10.3390/nu8010023
  • Li, M., Reynolds, C. M., Sloboda, D. M., Gray, C. ve Vickers, M. H. (2013). Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PloS One, 8(10), e76961. https://doi.org/10.1371/journal.pone.0076961
  • Lumeng, C. N. ve Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic disease. The Journal of Clinical Investigation, 121(6), 2111–2117. https://doi.org/10.1172/JCI57132
  • Mathai, M. L., Soueid, M., Chen, N., Jayasooriya, A. P., Sinclair, A. J., Wlodek, M. E., Weisinger, H. S. ve Weisinger, R. S. (2004). Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?. Obesity Research, 12(11), 1886–1894. https://doi.org/10.1038/oby.2004.234
  • Matias, I. ve Di Marzo, V. (2007). Endocannabinoids and the control of energy balance. Trends in Endocrinology and Metabolism: TEM, 18(1), 27–37. https://doi.org/10.1016/j.tem.2006.11.006
  • Muñoz, A. ve Costa, M. (2013). Nutritionally mediated oxidative stress and inflammation. Oxidative Medicine and Cellular Longevity, 2013, 610950. https://doi.org/10.1155/2013/610950
  • Noble, E. E., Billington, C. J., Kotz, C. M. ve Wang, C. (2011). The lighter side of BDNF. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 300(5), R1053–R1069. https://doi.org/10.1152/ajpregu.00776.2010
  • Pimentel, G. D., Lira, F. S., Rosa, J. C., Oller do Nascimento, C. M., Oyama, L. M., Harumi Watanabe, R. L. ve Ribeiro, E. B. (2013). High-fat fish oil diet prevents hypothalamic inflammatory profile in rats. ISRN Inflammation, 2013, 419823. https://doi.org/10.1155/2013/419823
  • Segovia, S. A., Vickers, M. H., Gray, C. ve Reynolds, C. M. (2014). Maternal obesity, inflammation, and developmental programming. BioMed Research International, 2014, 418975. https://doi.org/10.1155/2014/418975
  • Sharma, S., Zhuang, Y. ve Gomez-Pinilla, F. (2012). High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour. Scientific Reports, 2, 431. https://doi.org/10.1038/srep00431
  • Shefer, G., Marcus, Y. ve Stern, N. (2013). Is obesity a brain disease?. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2489–2503. https://doi.org/10.1016/j.neubiorev.2013.07.015
  • Shook, L. L., Kislal, S. ve Edlow, A. G. (2020). Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenatal Diagnosis, 40(9), 1126-1137. https://doi.org/10.1002/pd.5724
  • Silvestri, C. ve Di Marzo, V. (2013). The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metabolism, 17(4), 475–490. https://doi.org/10.1016/j.cmet.2013.03.001
  • Souza, C. G., Moreira, J. D., Siqueira, I. R., Pereira, A. G., Rieger, D. K., Souza, D. O., Souza, T. M., Portela, L. V. ve Perry, M. L. (2007). Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sciences, 81(3), 198–203. https://doi.org/10.1016/j.lfs.2007.05.001
  • Sugasini, D. ve Lokesh, B. R. (2015). Rats given linseed oil in microemulsion forms enriches the brain synaptic membrane with docosahexaenoic acid and enhances the neurotransmitter levels in the brain. Nutritional Neuroscience, 18(2), 87–96. https://doi.org/10.1179/1476830514Y.0000000111
  • Suzuki, S., Akechi, T., Kobayashi, M., Taniguchi, K., Goto, K., Sasaki, S., Tsugane, S., Nishiwaki, Y., Miyaoka, H. ve Uchitomi, Y. (2004). Daily omega-3 fatty acid intake and depression in Japanese patients with newly diagnosed lung cancer. British Journal of Cancer, 90(4), 787–793. https://doi.org/10.1038/sj.bjc.6601621
  • Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., Zhao, X., Sarruf, D. A., Izgur, V., Maravilla, K. R., Nguyen, H. T., Fischer, J. D., Matsen, M. E., Wisse, B. E., Morton, G. J., Horvath, T. L., Baskin, D. G., Tschöp, M. H. ve Schwartz, M. W. (2012). Obesity is associated with hypothalamic injury in rodents and humans. The Journal of Clinical Investigation, 122(1), 153–162. https://doi.org/10.1172/JCI59660
  • Türkiye Endokrinoloji ve Metabolizma Derneği (TEMD). (2018). Obezite Tanı ve Tedavi Kılavuzu. Obezite tedavisinde bilişsel davranışçı terapi. 6. Baskı. Ankara, Miki Matbaacılık San. ve Tic. Ltd. Şti.; s:77-79.http://www.temd.org.tr/admin/uploads/tbl_gruplar/20180525144116-2018-05-25tbl_gruplar144108.pdf. Erişim tarihi 24 Ocak 2023.
  • Türkiye İstatistik Kurumu (TÜİK). (2019). Türkiye Sağlık Araştırması. https://data.tuik.gov.tr/Bulten/Index?p=Turkiye-Saglik-Arastirmasi-2019-33661. Erişim tarihi 24 Ocak 2023.
  • Vieau, D., Sebaai, N., Léonhardt, M., Dutriez-Casteloot, I., Molendi-Coste, O., Laborie, C., Breton, C., Deloof, S. ve Lesage, J. (2007). HPA axis programming by maternal undernutrition in the male rat offspring. Psychoneuroendocrinology, 32 Suppl 1, S16–S20. https://doi.org/10.1016/j.psyneuen.2007.03.014
  • Viggiano, E., Mollica, M. P., Lionetti, L., Cavaliere, G., Trinchese, G., De Filippo, C., Chieffi, S., Gaita, M., Barletta, A., De Luca, B., Crispino, M. ve Monda, M. (2016). Effects of an High-Fat Diet Enriched in Lard or in Fish Oil on the Hypothalamic Amp-Activated Protein Kinase and Inflammatory Mediators. Frontiers in Cellular Neuroscience, 10, 150. https://doi.org/10.3389/fncel.2016.00150
  • Watanabe, S., Doshi, M. ve Hamazaki, T. (2003). N-3 polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69(1), 51–59. https://doi.org/10.1016/s0952-3278(03)00056-5
  • Willemsen, L. E., Koetsier, M. A., Balvers, M., Beermann, C., Stahl, B. ve van Tol, E. A. (2008). Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. European Journal of Nutrition, 47(4), 183–191. https://doi.org/10.1007/s00394-008-0712-0
  • Williams L. M. (2012). Hypothalamic dysfunction in obesity. The Proceedings of the Nutrition Society, 71(4), 521–533. https://doi.org/10.1017/S002966511200078X
  • World Health Organization (WHO). (2021). Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Erişim tarihi 24 Ocak 2023.
  • Wu, A., Ying, Z. ve Gomez-Pinilla, F. (2008). Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience, 155(3), 751–759. https://doi.org/10.1016/j.neuroscience.2008.05.061
  • Yoshida, R., Ohkuri, T., Jyotaki, M., Yasuo, T., Horio, N., Yasumatsu, K., Sanematsu, K., Shigemura, N., Yamamoto, T., Margolskee, R. F. ve Ninomiya, Y. (2010). Endocannabinoids selectively enhance sweet taste. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 935–939. https://doi.org/10.1073/pnas.0912048107
  • Zhang, Y. Y., Liu, W., Zhao, T. Y. ve Tian, H. M. (2017). Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials. The Journal of Nutrition, Health & Aging, 21(2), 187–192. https://doi.org/10.1007/s12603-016-0755-5
  • Ziemens, D., Touma, C. ve Rappeneau, V. (2022). Neurobiological mechanisms modulating emotionality, cognition and reward-related behaviour in high-fat diet-fed rodents. International Journal of Molecular Sciences, 23(14), 7952. https://doi.org/10.3390/ijms23147952
APA ülke E, Kislal S (2023). Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. , 287 - 309. 10.7816/nesne-11-28-07
Chicago ülke Esra,Kislal Sezen Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. (2023): 287 - 309. 10.7816/nesne-11-28-07
MLA ülke Esra,Kislal Sezen Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. , 2023, ss.287 - 309. 10.7816/nesne-11-28-07
AMA ülke E,Kislal S Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. . 2023; 287 - 309. 10.7816/nesne-11-28-07
Vancouver ülke E,Kislal S Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. . 2023; 287 - 309. 10.7816/nesne-11-28-07
IEEE ülke E,Kislal S "Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü." , ss.287 - 309, 2023. 10.7816/nesne-11-28-07
ISNAD ülke, Esra - Kislal, Sezen. "Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü". (2023), 287-309. https://doi.org/10.7816/nesne-11-28-07
APA ülke E, Kislal S (2023). Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. Nesne Dergisi, 11(28), 287 - 309. 10.7816/nesne-11-28-07
Chicago ülke Esra,Kislal Sezen Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. Nesne Dergisi 11, no.28 (2023): 287 - 309. 10.7816/nesne-11-28-07
MLA ülke Esra,Kislal Sezen Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. Nesne Dergisi, vol.11, no.28, 2023, ss.287 - 309. 10.7816/nesne-11-28-07
AMA ülke E,Kislal S Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. Nesne Dergisi. 2023; 11(28): 287 - 309. 10.7816/nesne-11-28-07
Vancouver ülke E,Kislal S Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü. Nesne Dergisi. 2023; 11(28): 287 - 309. 10.7816/nesne-11-28-07
IEEE ülke E,Kislal S "Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü." Nesne Dergisi, 11, ss.287 - 309, 2023. 10.7816/nesne-11-28-07
ISNAD ülke, Esra - Kislal, Sezen. "Omega-3 Yağ Asitlerinin Obeziteye Bağlı Nörobiyolojik ve Davranışsal Değişiklikler Üzerindeki Rolü". Nesne Dergisi 11/28 (2023), 287-309. https://doi.org/10.7816/nesne-11-28-07