Yıl: 2024 Cilt: 7 Sayı: 1 Sayfa Aralığı: 72 - 88 Metin Dili: İngilizce DOI: 10.34248/bsengineering.1382392 İndeks Tarihi: 25-03-2024

Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm

Öz:
This paper presents a method for improving the performance of DC-DC Buck Converter Systems using voltage mode Pulse Width Modulation (PWM) control. We explore the effectiveness of Proportional-Integral (PI) and Lead Compensator controllers in enhancing system stability, minimizing voltage fluctuations, and improving load response. The system is modeled through transfer functions, and the controllers' impacts are analyzed both individually and in tandem. A key contribution of this work is the optimization of the PI-Lead Compensator parameters utilizing the Simulated Annealing Algorithm, which is fine-tuned to improve phase margin, gain crossover frequency, and steady state error. These parameters are critical for optimizing the system’s output performance. Through MATLAB simulations, we demonstrate the iterative process of parameter optimization and validate the algorithm's efficacy in managing the DC-DC Buck Converter. The results highlight the enhanced performance achieved with the optimized parameters, providing a viable solution for effective control of DC-DC Buck Converter Systems.
Anahtar Kelime: DC-DC Buck Converter Voltage Mode PWM Control PI-Lead Compensator Simulated Annealing Algorithm

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Amaral AMR, António JMC. 2022a. Simulation tool to evaluate fault diagnosis techniques for DC-DC converters. Symmetry 14(9): 1886. DOI: 10.3390/sym14091886.
  • Amaral AMR, António JMC. 2022b. Using python for the simulation of closed-loop pi controller for a buck converter. Signals, 3(2): 313-325. DOI: 10.3390/signals3020020.
  • Basso CP. 2014. Switch-Mode power supplies. McGraw Hill, New York, USA, 2nd ed., pp: 117.
  • Bishop RC, Dorf RH. 2011. Modern control systems. Pearson, New York, USA, pp: 1104.
  • Bose BK. 2002. Modern power electronics & AC drives. Prentice Hall, London, UK, pp: 736.
  • Bose BK. 2020. Power electronics and motor drives: advances and trends. Academic Press, London, UK, pp: 934.
  • Buck-Converter-PI-Lead-Compensator-SA. 2022. URL: https://github.com/kd94/Buck-Converter-PI-Lead-Compensator-SA (Accessed date: March, 15, 2022).
  • Chibante R, 2010. Simulated annealing: theory with applications. Intechopen, London, UK, pp: 302.
  • Corradini L. 2015. Digital control of high-frequency switched-mode power converters. John Wiley & Sons-IEEE Press, London, UK, pp: 368.
  • de Azpeitia MAP. 2021. Design and control of power converters 2019. MDPI, Basel, Switzerland, pp: 402.
  • Duan W, Zhang H, Wang C. 2018. Deformation estimation for time series InSAR using simulated annealing algorithm. Sensors, 19(1): 115. DOI: 10.3390/s19010115.
  • Eiben AE, James ES. 2015. Introduction to evolutionary computing. Springer-Verlag, Berlin, Heidelberg, Germany, pp: 287.
  • Ekinci S, Baran H. 2019. Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access, 7: 39935-39947. DOI: 10.1109/ACCESS.2019.2906980.
  • Erickson RW, Maksimović D. 2020. Fundamentals of power electronic. Springer, Cham, New York, USA, 3rd ed., pp: 1103.
  • Feng T, Yu D, Wu B, Wang H. 2023. A micro-hotplate-based oven-controlled system used to improve the frequency stability of mems resonators. Micromachines, 14(6): 1222. DOI: 10.3390/mi14061222.
  • Fraga-Gonzalez LF, Fuentes-Aguilar RQ, Garcia-Gonzalez A, Sanchez-Ante G. 2017. Adaptive simulated annealing for tuning PID controllers. AI Commun, 30(5): 347-362. DOI: 10.3233/AIC-170741.
  • Franklin GF. 2002. Feedback control of dynamic systems. Upper Saddle River: Prentice hall, London, UK, pp: 928.
  • Gaing Z-L. 2004. A Particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE, 19(2): 384-391. DOI: 10.1109/TEC.2003.821821.
  • Garg, Man M, Yogesh VH, Mukesh KP. 2015. Design and performance analysis of a Pwm Dc–Dc buck converter using PI–Lead compensator. Arab J Sci Engin, 40: 3607-3626. DOI: 10.1007/s13369-015-1838-z.
  • Glover FW, Gary AK. 2006. Handbook of metaheuristics. Springer Science & Business Media, London, UK, pp: 570.
  • Hekimoğlu B, Serdar E. 2020. Optimally designed PID controller for a DC-DC buck converter via a hybrid whale optimization algorithm with simulated annealing. Electrica, 20(1): 19-27. DOI: 10.5152/electrica.2020.19034.
  • Kazimierczuk MK. 2015. Pulse-width modulated DC-DC power converters. John Wiley & Sons, London, UK, pp: 960.
  • Li H, Hui YB, Wang Q, Wang HX, Wang LJ. 2022. Design of anti-swing pid controller for bridge crane based on PSO and SA algorithm. Electronics, 11.19: 3143. DOI: 10.3390/electronics11193143.
  • Magzoub MA, Thamer A. 2022. Optimal design of automatic generation control based on simulated annealing in interconnected two-are a power system using hybrid PID—fuzzy control. Energies, 15.4: 1540. DOI: 10.3390/en15041540.
  • Middlebrook RD, Slobodan C. 1976. A general unified approach to modelling switching-converter power stages. IEEE Power Electronics Specialists Conference, June 8-10, Cleveland, OH, USA, pp: 18-34. DOI: 10.1080/00207217708900678.
  • Mohan N, Tore M. 2003. Power electronics: converters, applications, and design. John Wiley & Sons, London, UK, pp: 832.
  • Moorthi VR. 2005. Power electronics: devices, circuits and industrial applications. Oxford University Press, London, UK, pp: 1028.
  • Nalepa R, Karol N, Błażej S. 2020. Hybrid tuning of a boost converter pi voltage compensator by means of the genetic algorithm and the d-decomposition. Energies, 14.1: 173. DOI: 10.3390/en14010173.
  • Nise NS. 2020. Control systems engineering. John Wiley & Sons, London, UK, pp: 800.
  • Ogata K. 2010. Modern control engineering. Upper Saddle River, Prentice Hal, New Jersey, USA, pp: 904.
  • Pressman AI. 2009. Switching power supply design. McGraw-Hill Education, New York, USA, pp: 550.
  • Qu J, Zhang Z, Li H, Li M, Xi X. 2023. Design and experiments of a two-stage fuzzy controller for the off-center steer-by-wire system of an agricultural mobile robot. Machines, 11.2: 314. DOI: 10.3390/machines11020314.
  • Rashid MH. 2010. Power electronics: circuits, devices, and applications. Pearson, New York, USA, pp: 1031.
  • Rashid MH. 2017. Power electronics handbook. Butterworth-Heinemann, Berlin Germany, pp: 254.
  • Simulated Annealing Options-MATLAB. 2022. URL: https://www.mathworks.com/help/gads/simulated-annealing-options.html#bq26j8s-4 (Accessed date: March, 15, 2022).
  • Suntio T, Messo T. 2019. Power electronics in renewable energy systems. MDPI AG, Basel, Switzerland, pp:604.
  • Surya S, Mohan KS, Sheldon W. 2021. Modeling of average current in non-ideal buck and synchronous buck converters for low power application. Electronics, 10(21): 2672. DOI: 10.3390/electronics10212672.
  • Surya S, Sheldon W. 2021. Generalized circuit averaging technique for two-switch PWM DC-DC converters in CCM. Electronics, 10(4): 392. DOI: 10.3390/electronics10040392.
  • Surya S, Sheldon W. 2021. Modeling of average current in ideal and non-ideal boost and synchronous boost converters. Energies, 14(16): 5158. DOI: 10.3390/en14165158.
  • Umanand L. 2009. Power Electronics: essentials & applications. Wiley India Pvt. Limited, London, UK, pp: 944.
  • Volkov T. 2015. Fundamentals of power electronics. Scitus Academics LLC, London, UK, pp: 306.
  • Wang X, Bingwen Q, Hongdong W. 2021. Comparisons of Modeling Methods for Fractional-Order Cuk Converter. Electronics, 10.06: 710. DOI: 10.3390/electronics10060710.
  • Yang C, Xie F, Chen Y, Xiao W, Zhang B. 2020. Modeling and analysis of the fractional-order flyback converter in continuous conduction mode by caputo fractional calculus. Electronics, 9(9): 1544. DOI: 10.3390/electronics9091544.
  • Yang XS. 2020. Nature-inspired optimization algorithms. Academic Press, London, UK, pp: 160.
  • Zeb K, Nazir MS, Ahmad I, Uddin W. 2021. Control of transformerless inverter-based two-stage grid-connected photovoltaic system using adaptive-pi and adaptive sliding mode controllers. Energies, 14(9): 2546. DOI: 10.3390/en14092546.
APA DOĞAN K, Dag B (2024). Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. , 72 - 88. 10.34248/bsengineering.1382392
Chicago DOĞAN Kübra,Dag Bulent Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. (2024): 72 - 88. 10.34248/bsengineering.1382392
MLA DOĞAN Kübra,Dag Bulent Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. , 2024, ss.72 - 88. 10.34248/bsengineering.1382392
AMA DOĞAN K,Dag B Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. . 2024; 72 - 88. 10.34248/bsengineering.1382392
Vancouver DOĞAN K,Dag B Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. . 2024; 72 - 88. 10.34248/bsengineering.1382392
IEEE DOĞAN K,Dag B "Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm." , ss.72 - 88, 2024. 10.34248/bsengineering.1382392
ISNAD DOĞAN, Kübra - Dag, Bulent. "Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm". (2024), 72-88. https://doi.org/10.34248/bsengineering.1382392
APA DOĞAN K, Dag B (2024). Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. Black Sea Journal of Engineering and Science, 7(1), 72 - 88. 10.34248/bsengineering.1382392
Chicago DOĞAN Kübra,Dag Bulent Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. Black Sea Journal of Engineering and Science 7, no.1 (2024): 72 - 88. 10.34248/bsengineering.1382392
MLA DOĞAN Kübra,Dag Bulent Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. Black Sea Journal of Engineering and Science, vol.7, no.1, 2024, ss.72 - 88. 10.34248/bsengineering.1382392
AMA DOĞAN K,Dag B Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. Black Sea Journal of Engineering and Science. 2024; 7(1): 72 - 88. 10.34248/bsengineering.1382392
Vancouver DOĞAN K,Dag B Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm. Black Sea Journal of Engineering and Science. 2024; 7(1): 72 - 88. 10.34248/bsengineering.1382392
IEEE DOĞAN K,Dag B "Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm." Black Sea Journal of Engineering and Science, 7, ss.72 - 88, 2024. 10.34248/bsengineering.1382392
ISNAD DOĞAN, Kübra - Dag, Bulent. "Design and Optimization of Voltage Mode PWM Control of DC-DC Buck Converter with a PI-Lead Compensator Using the Simulated Annealing Algorithm". Black Sea Journal of Engineering and Science 7/1 (2024), 72-88. https://doi.org/10.34248/bsengineering.1382392