Yıl: 2023 Cilt: 34 Sayı: 4 Sayfa Aralığı: 185 - 196 Metin Dili: Türkçe DOI: 10.17644/sbd.1326241 İndeks Tarihi: 23-01-2024

Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma

Öz:
Faz açısı (FA), hem yumuşak doku kütlesinin miktarındaki hem de kalitesindeki değişiklikleri ifade eder. Bu çalışmanın amacı, akut yüksek şiddette kesintili egzersizin menstrual döngü (MD) ve sirkadiyen ritme (SR) göre biyoelektrik impedans yöntemi (BIA) ile ölçülen FA üzerine etkisini incelemektir. Düzenli menstrual döngüye sahip (menstruasyon gün: 28.7 ± 2.05 gün) 10 gönüllü kadının (yaş = 21.4 ± 2.7 yıl) menstrual döngünün midfoliküler (7–9. günler) ve luteal (21–23. günler) fazlarında sabah (08:30–10:00) ve akşam (18:00–19:00) bisiklet ergometresinde 5x6 saniye tekrarlı sprint testinden önce ve hemen sonra (1. dakika), 10. ve 20. dakikalarda elden ayağa BIA’dan “arktanjant(Reaktans/Rezistans) x (180/π)” formülü kullanılarak FA belirlenmiştir. Biyolojik döngüler ve akut egzersizin FA üzerine etkisi için 2 x 2 x 4 (menstrual faz x günün zamanı x egzersiz) Tekrarlı ölçümlerde çok yönlü varyans analizi kullanılmıştır. MD’nin ve SR’nin BIA ile ölçülen FA üzerine etkisi anlamlı bulunmamıştır (sırasıyla p=0.095; η2=0.279, p=0.373; η2=0.089). Akut yüksek şiddette egzersizin de FA üzerine etkisi anlamlı değildir (p=0.457; η2=0.090). Benzer şekilde MD x SR (p=0.188;η2=0.184), MD x egzersiz (p=0. 889; η2=0.023), SR x egzersiz (p= 0.351; η 2 = 0.112), MD x SR x egzersiz (p= 0.048; η2 = 0.251) etkileşimleri de anlamlı değildir. Bu çalışmanın bulguları, kadınlarda BIA ile ölçülen faz açısının menstrual döngü ve sirkadiyen ritim ile kombine akut yüksek şiddetteki egzersizden etkilenmediğini göstermiştir. Ek olarak etkileşim istatistiklerinin anlamlı olmaması da faz açısında meydana gelen değişimlerin benzer olduğunu gösterir. Bu bulgular, kadınlarda yumuşak doku kütlesinin miktar ve kalitesindeki değişiklikler belirlenirken, biyolojik döngülerin ve akut yüksek şiddette egzersizin kısıtlayıcı etkisinin olmadığını göstermektedir.
Anahtar Kelime: Menstrual döngü Sirkadiyen ritim Akut egzersiz Faz açısı

The Effect of Acute High-Intensity Exercise During The Menstrual Cycle And Circadian Rhythm on Phase Angle Measured from Bioelectrical Impedance Analysis: A Pilot Study

Öz:
Phase angle (PA) refers to changes in both the quantity and quality of soft tissue mass. Therefore, the aim of this study was to examine the effects of acute high intensity intermittent exercise on phase angle determined by bioelectrical impedance analysis (BIA) according to menstrual cycle (MC) and circadian rhythm (CR). Ten eumenorrheic women (menstrual cycle: 28.7 ± 2.05 days, age: 21.4±2.6 yrs) performed 5x6 second repeated sprint tests (RST) on cycle ergometer in the morning (08:30–10:00) and evening (18:00–19:00) sessions during the midfollicular (7–9 th days) and luteal phases (21–23rd days) of the MC. The PA was determined before and after the RST (1st minute), 10th and 20th minutes using the formula (Arctangent (Reactance/Resistance) * (180/π). The effect of acute exercise and biological cycles on PA was determined by 2x2x4 (menstrual phase x time-of-day x exercise) repeated measures analysis of variance. The effects of MC and CR on PA value measured by BIA was not significant (p=0.095;η2=0.279, p=0.373; η2=0.089 respectively). The effect of acute high-intensity exercise on PA was also not significant (p=0.457; η2=0.090). Similarly, MC x CR (p=0.188;η2=0.184), MC x exercise (p=0.889; η2=0.023), CR x exercise (p=0.351; η2=0.112), MC x CR x exercise (p=0.048; η2=0.251) interactions were also not significant. The results of this study showed that the PA measured by the BIA method in women was not affected by acute high-intensity exercise combined with the MC and CR. In addition, the insignificance of interaction statistics indicates that the changes in the PA are similar. These findings suggested that biological cycles and acute high-intensity exercise are not limiting factors when determining changes in the quantity and quality of soft tissue mass in women.
Anahtar Kelime: Menstrual cycle Circadian rhythm Acute exercise Phase angle

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Andreacci, J. L., Nagle, T., Fitzgerald, E., Rawson, E. S., and Dixon, C. B. (2013). Effect of exercise intensity on percent body fat determined by leg-to-leg and segmental bioelectrical impedance analyses in adults. Research Quarterly for Exercise and Sport, 84(1), 88-95.
  • 2. Baker, F. C., and Driver, H. S. (2007). Circadian rhythms, sleep, and the menstrual cycle. Sleep Medicine, 8(6), 613-622.
  • 3. Barbosa-Silva, M. C. G., Barros, A. J., Wang, J., Heymsfield, S. B., and Pierson Jr, R. N. (2005). Bioelectrical impedance analysis: population reference values for phase angle by age and sex–. The American journal of clinical nutrition, 82(1), 49-52.
  • 4. Baumgartner RN, Chumlea WC, Roche AF. (1988). Bioelectric impedance phase angle and body composition. Am J Clin Nutr., 48(1):16-23. doi: 10.1093/ajcn/48.1.16. PMID: 3389323.)
  • 5. Boone, C. H., Hoffman, J. R., Gonzalez, A. M., Jajtner, A. R., Townsend, J. R., Baker, K. M., Fukuda, D. H., and Stout, J. R. (2016). Changes in plasma aldosterone and electrolytes following high-volume and high-intensity resistance exercise protocols in trained men. Journal of Strength and Conditioning Research, 30(7), 1917-1923.
  • 6. Borg, G. A. (1982). Psychophysical bases of perceived exertion. Med Sci Sports Exerc, 14(5), 377-381.
  • 7. Bosy-Westphal, A., Danielzik, S., Dörhöfer, R.-P., Piccoli, A., and Müller, M. J. (2005). Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis–. The American Journal of Clinical Nutrition, 82(1), 60- 68.
  • 8. Bosy Westphal, A., Danielzik, S., Dörhöfer, R. P., Later, W., Wiese, S., and Müller, M. J. (2006). Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition, 30(4), 309-316.
  • 9. Buemi, M., Campo, S., Sturiale, A., Aloisi, C., Romeo, A., Nostro, L., Crascì, E., Ruello, A., Manfredini, R., and Floccari, F. (2007). Circadian rhythm of hydration in healthy subjects and uremic patients studied by bioelectrical impedance analysis. Nephron Physiology, 106(3), p39-p44.
  • 10. Byrd, P. J., and Thomas, T. R. (1983). Hydrostatic weighing during different stages of the menstrual cycle. Research Quarterly for Exercise and Sport, 54(3), 296-298.
  • 11. Campa, F., Micheli, M. L., Pompignoli, M., Cannataro, R., Gulisano, M., Toselli, S., Greco, G., and Coratella, G. (2021). The influence of menstrual cycle on bioimpedance vector patterns, performance, and flexibility in elite soccer players. International Journal of Sports Physiology and Performance, 17(1), 58-66.
  • 12. Campa, F., Thomas, D. M., Watts, K., Clark, N., Baller, D., Morin, T., Toselli, S., Koury, J. C., Melchiorri, G., and Andreoli, A. (2022). Reference percentiles for bioelectrical phase angle in athletes. Biology, 11(2), 264.
  • 13. Carmichael, M. A., Thomson, R. L., Moran, L. J., and Wycherley, T. P. (2021). The impact of menstrual cycle phase on athletes’ performance: a narrative review. International Journal of Environmental Research and Public Health, 18(4), 1667.
  • 14. Chen, K.T., Chen, Y.Y., Wang, C.W., Chuang, C.L., Chiang, L.M., Lai, C.L., Lu, H.K., Dwyer, G. B., Chao, S.P., and Shih, M.K. (2016). Comparison of standing posture bioelectrical impedance analysis with DXA for body composition in a large, healthy Chinese population. PloS One, 11(7), e0160105.
  • 15. Constantini, N. W., Dubnov, G., and Lebrun, C. M. (2005). The menstrual cycle and sport performance. Clinics in Sports Medicine, 24(2), e51-e82.
  • 16. Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., and Sayer, A. A. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing, 48(1), 16-31.
  • 17. Cugini, P., Salandri, A., Petrangeli, C. M., Capodaglio, P. F., and Giovannini, C. (1996). Circadian rhythms in human body composition. Chronobiology International, 13(5), 359-371.
  • 18. D’Alessandro, C., Morelli, E., Evangelisti, I., Galetta, F., Franzoni, F., Lazzeri, D., Piazza, M., and Cupisti, A. (2007). Profiling the diet and body composition of subelite adolescent rhythmic gymnasts. Pediatric Exercise Science, 19(2), 215-227.
  • 19. De Blasio, F., Santaniello, M., Mazzarella, G., Bianco, A., Lionetti, L., Franssen, F., and Scalfi, L. (2017). Raw BIA variables are predictors of muscle strength in patients with chronic obstructive pulmonary disease. European Journal of Clinical Nutrition, 71(11), 1336-1340.
  • 20. Demura, S., Yamaji, S., Goshi, F., and Nagasawa, Y. (2002). The influence of transient change of total body water on relative body fats based on three bioelectrical impedance analyses methods: Comparison between before and after exercise with sweat loss, and after drinking. Journal of Sports medicine and Physical fitness, 42(1), 38.
  • 21. Deurenberg, P., Weststrate, J., Paymans, I., and Van der Kooy, K. (1988). Factors affecting bioelectrical impedance measurements in humans. European Journal of Clinical Nutrition, 42(12), 1017-1022.
  • 22. Di Vincenzo, O., Marra, M., Di Gregorio, A., Pasanisi, F., and Scalfi, L. (2021). Bioelectrical impedance analysis (BIA)-derived phase angle in sarcopenia: a systematic review. Clinical Nutrition, 40(5), 3052-3061.
  • 23. Di Vincenzo, O., Marra, M., and Scalfi, L. (2019). Bioelectrical impedance phase angle in sport: A systematic review. Journal of the International Society of Sports Nutrition, 16(1), 49.
  • 24. Dittmar, M. (2004). Comparison of bipolar and tetrapolar impedance techniques for assessing fat mass. American Journal of Human Biology: The Official Journal of the Human Biology Association, 16(5), 593-597.
  • 25. Dixon, C., Andreacci, J., and Ledezma, C. (2008). Effect of aerobic exercise on percent body fat using leg-to-leg and segmental bioelectrical impedance analysis in adults. International Journal of Body Composition Research, 6(1), 27.
  • 26. Doğrusoy, M. (2018). 20-65 yaş arası kadınların biyoelektrik impedans yöntemiyle faz açısı ölçümlerinin ve besin tüketimlerinin değerlendirilmesi [Yayınlanmamış Yüksek Lisans Tezi]. Haliç Üniversity, İstanbul.
  • 27. Ellard, C., Thompson, W., and Burks, S. (1991). Effects of the menstrual cycle on body composition. Scandinavian Journal of Medicine and Science In Sports, 1(3), 147-150.
  • 28. Farage, M. A., Neill, S., and MacLean, A. B. (2009). Physiological changes associated with the menstrual cycle: a review. Obstetrical and Gynecological Survey, 64(1), 58-72.
  • 29. Fowler, P., Casey, C., Cameron, G., Foster, M. A., and Knight, C. (1990). Cyclic changes in composition and volume of the breast during the menstrual cycle, measured by magnetic resonance imaging. BJOG: An International Journal of Obstetrics and Gynaecology, 97(7), 595- 602.
  • 30. Fu, L., Ren, Z., Liu, X., Wu, N., Zhao, K., Luo, G., Yang, H., Zhang, Y., Yan, T., and Liu, Y. (2022). Reference data of phase angle using bioelectrical impedance analysis in overweight and obese Chinese. Frontiers in Endocrinology, 13, 924199.
  • 31. Gleichauf, C., and Roe, D. (1989). The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. The American Journal of Clinical Nutrition, 50(5), 903-907.
  • 32. Gonzalez, M. C., Barbosa-Silva, T. G., Bielemann, R. M., Gallagher, D., and Heymsfield, S. B. (2016). Phase angle and its determinants in healthy subjects: influence of body composition. The American Journal of Clinical Nutrition, 103(3), 712-716.
  • 33. Hayward, V., and Stolarczyk, L. (1996). Applied body composition. Human Kinetics, Champaign.
  • 34. Kim, J., Ku, B., Bae, J.-H., Han, G.-C., and Kim, J. U. (2018). Contrast in the circadian behaviors of an electrodermal activity and bioimpedance spectroscopy. Chronobiology International, 35(10), 1413-1422.
  • 35. Kolka, M. A., and Stephenson, L. A. (1997). Interaction of menstrual cycle phase, clothing resistance and exercise on thermoregulation in women. Journal of Thermal Biology, 22(2), 137-141.
  • 36. Komukai, K., Mochizuki, S., and Yoshimura, M. (2010). Gender and the renin angiotensin–aldosterone system. Fundamental and Clinical Pharmacology, 24(6), 687-698.
  • 37. Koşar, Ş. N., Güzel, Y., Köse, M. G., Kin İşler, A., and Hazır, T. (2022). Whole and segmental body composition changes during midfollicular and mid-luteal phases of the menstrual cycle in recreationally active young women. Annals of Human Biology, 49(2), 124-132.
  • 38. Lebrun, C. M., McKenzie, D. C., Prior, J. C., and Taunton, J. E. (1995). Effects of menstrual cycle phase on athletic performance. Medicine and Science in Sports and Exercise, 27(3), 437-444.
  • 39. Lee, L.W., Liao, Y.S., Lu, H.K., Hsiao, P.L., Chen, Y.Y., Chi, C.C., and Hsieh, K.C. (2017). Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PloS One, 12(2), e0171568.
  • 40. Lindinger, M. I., Heigenhauser, G., McKelvie, R., and Jones, N. (1992). Blood ion regulation during repeated maximal exercise and recovery in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 262(1), R126-R136.
  • 41. Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., and Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition, 41(4), 810-817.
  • 42. Lukaski, H. C., Kyle, U. G., and Kondrup, J. (2017). Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Current Opinion in Clinical Nutrition and Metabolic Care, 20(5), 330-339.
  • 43. Mala, L., Maly, T., Zahalka, F., Bunc, V., Kaplan, A., Jebavy, R., and Tuma, M. (2015). Body composition of elite female players in five different sports games. Journal of Human Kinetics, 45(1), 207-215.
  • 44. Marini, E., Campa, F., Buffa, R., Stagi, S., Matias, C. N., Toselli, S., Sardinha, L. B., and Silva, A. M. (2020). Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clinical Nutrition, 39(2), 447-454.
  • 45. Marra, M., Caldara, A., Montagnese, C., De Filippo, E., Pasanisi, F., Contaldo, F., and Scalfi, L. (2009). Bioelectrical impedance phase angle in constitutionally lean females, ballet dancers and patients with anorexia nervosa. European Journal of Clinical Nutrition, 63(7), 905-908.
  • 46. Matias, C. N., Santos, D. A., Júdice, P. B., Magalhães, J. P., Minderico, C. S., Fields, D. A., Lukaski, H. C., Sardinha, L. B., and Silva, A. M. (2016). Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clinical Nutrition, 35(2), 468-474.
  • 47. Mattiello, R., Amaral, M. A., Mundstock, E., and Ziegelmann, P. K. (2020). Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clinical Nutrition, 39(5), 1411-1417.
  • 48. McKenna, M. J., Heigenhauser, G. J., McKelvie, R. S., MacDougall, J. D., and Jones, N. L. (1997). Sprint training enhances ionic regulation during intense exercise in men. The Journal of Physiology, 501(3), 687-702.
  • 49. Meng, R., Cao, Y., Kong, Y., Wang, K., Yang, Z., Jia, Y., Dong, C., Duan, H., and Han, M. (2021). Effects of circadian rhythm disorder on body composition in women aged 31-40 years. Ann Palliat Med, 10(1), 340-349.
  • 50. Mundstock, E., Amaral, M. A., Baptista, R. R., Sarria, E. E., Dos Santos, R. R. G., Detoni Filho, A., Rodrigues, C. A. S., Forte, G. C., Castro, L., and Padoin, A. V. (2019). Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clinical Nutrition, 38(4), 1504-1510.
  • 51. Nickerson, B. S., Esco, M. R., Kliszczewicz, B. M., and Freeborn, T. J. (2017). Comparison of bioimpedance and underwater weighing body fat percentage before and acutely after exercise at varying intensities. The Journal of Strength and Conditioning Research, 31(5), 1395-1402.
  • 52. Norman, K., Stobäus, N., Pirlich, M., and Bosy-Westphal, A. (2012). Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clinical Nutrition, 31(6), 854-861.
  • 53. Norman, K., Wirth, R., Neubauer, M., Eckardt, R., and Stobäus, N. (2015). The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. Journal of the American Medical Directors Association, 16(2), 173. e117-173. e122.
  • 54. Parry, B. L., Hauger, R., Lin, E., LeVeau, B., Mostofi, N., Clopton, P. L., and Gillin, J. C. (1994). Neuroendocrine effects of light therapy in late luteal phase dysphoric disorder. Biological Psychiatry, 36(6), 356-364.
  • 55. Parry, B. L., Javeed, S., Laughlin, G. A., Hauger, R., and Clopton, P. (2000). Cortisol circadian rhythms during the menstrual cycle and with sleep deprivation in premenstrual dysphoric disorder and normal control subjects. Biological Psychiatry, 48(9), 920-931.
  • 56. Pivarnik, J., Goetting, M., and Senay, L. (1986). The effects of body position and exercise on plasma volume dynamics. European Journal of Applied Physiology and Occupational Physiology, 55(4), 450-456.
  • 57. Ploutz-Snyder, L., Convertino, V., and Dudley, G. (1995). Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 269(3), R536-R543.
  • 58. Rael, B., Romero-Parra, N., Alfaro-Magallanes, V. M., Barba-Moreno, L., Cupeiro, R., de Jonge, X. J., and Peinado, A. B. (2020). Body composition over the menstrual and oral contraceptive cycle in trained females. International Journal of Sports Physiology and Performance, 16(3), 375-381.
  • 59. Selberg, O., and Selberg, D. (2002). Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. European Journal of Applied Physiology, 86, 509-516.
  • 60. Stachoń, A. J. (2016). Menstrual changes in body composition of female athletes. Collegium Antropologicum, 40(2), 111-122.
  • 61. Stephenson, L., and Kolka, M. A. (1985). Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(2), R186-R191.
  • 62. Thompson, B. M., Hillebrandt, H. L., Sculley, D. V., Barba-Moreno, L., and Janse de Jonge, X. A. (2021). The acute effect of the menstrual cycle and oral contraceptive cycle on measures of body composition. European Journal of Applied Physiology, 121, 3051-3059. 63. Tomazo-Ravnik, T., and Jakopič, V. (2006). Changes in total body water and body fat in young women in the course of menstrual cycle. International Journal of Anthropology, 21(1), 55-60.
  • 64. Tsigos, C., Stefanaki, C., Lambrou, G. I., Boschiero, D., and Chrousos, G. P. (2015). Stress and inflammatory biomarkers and symptoms are associated with bioimpedance measures. European Journal of Clinical Investigation, 45(2), 126-134.
  • 65. Unick, J. L., Utter, A. C., Schumm, S., and McInnis, T. (2006). Evaluation of leg-to-leg BIA in assessing body composition in high-schoolaged males and females. Research in Sports Medicine, 14(4), 301-313.
  • 66. Waterhouse, J., Drust, B., Weinert, D., Edwards, B., Gregson, W., Atkinson, G., Kao, S., Aizawa, S., and Reilly, T. (2005). The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiology International, 22(2), 207-225.
  • 67. Weinert, D. (2005). The temporal order of mammals. Evidence for multiple central and peripheral control mechanisms and for endogenous and exogenous components: some implications for research on aging. Biological Rhythm Research, 36(4), 293-308.
APA Kin Isler A, Hazır T, Kose M, KULAKSIZ T, Esatbeyoglu F (2023). Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. , 185 - 196. 10.17644/sbd.1326241
Chicago Kin Isler Ayse,Hazır Tahir,Kose Mehmet Goren,KULAKSIZ TUGBA NILAY,Esatbeyoglu Ferhat Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. (2023): 185 - 196. 10.17644/sbd.1326241
MLA Kin Isler Ayse,Hazır Tahir,Kose Mehmet Goren,KULAKSIZ TUGBA NILAY,Esatbeyoglu Ferhat Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. , 2023, ss.185 - 196. 10.17644/sbd.1326241
AMA Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. . 2023; 185 - 196. 10.17644/sbd.1326241
Vancouver Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. . 2023; 185 - 196. 10.17644/sbd.1326241
IEEE Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F "Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma." , ss.185 - 196, 2023. 10.17644/sbd.1326241
ISNAD Kin Isler, Ayse vd. "Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma". (2023), 185-196. https://doi.org/10.17644/sbd.1326241
APA Kin Isler A, Hazır T, Kose M, KULAKSIZ T, Esatbeyoglu F (2023). Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. Spor Bilimleri Dergisi, 34(4), 185 - 196. 10.17644/sbd.1326241
Chicago Kin Isler Ayse,Hazır Tahir,Kose Mehmet Goren,KULAKSIZ TUGBA NILAY,Esatbeyoglu Ferhat Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. Spor Bilimleri Dergisi 34, no.4 (2023): 185 - 196. 10.17644/sbd.1326241
MLA Kin Isler Ayse,Hazır Tahir,Kose Mehmet Goren,KULAKSIZ TUGBA NILAY,Esatbeyoglu Ferhat Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. Spor Bilimleri Dergisi, vol.34, no.4, 2023, ss.185 - 196. 10.17644/sbd.1326241
AMA Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. Spor Bilimleri Dergisi. 2023; 34(4): 185 - 196. 10.17644/sbd.1326241
Vancouver Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma. Spor Bilimleri Dergisi. 2023; 34(4): 185 - 196. 10.17644/sbd.1326241
IEEE Kin Isler A,Hazır T,Kose M,KULAKSIZ T,Esatbeyoglu F "Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma." Spor Bilimleri Dergisi, 34, ss.185 - 196, 2023. 10.17644/sbd.1326241
ISNAD Kin Isler, Ayse vd. "Menstrual Döngü ve Sirkadiyen Ritme Göre Akut Yüksek Şiddette Egzersizin Biyoelektrik Empedans Analizinden Ölçülen Faz Açısı Üzerine Etkisi: Pilot Çalışma". Spor Bilimleri Dergisi 34/4 (2023), 185-196. https://doi.org/10.17644/sbd.1326241