Yıl: 2023 Cilt: 29 Sayı: 3 Sayfa Aralığı: 756 - 764 Metin Dili: İngilizce DOI: 10.15832/ankutbd.1066364 İndeks Tarihi: 28-02-2024

Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing

Öz:
Hardaliye is a traditional beverage produced by fermenting red grapes with mustard seeds and sour cherry leaves in the Thrace region of Turkey. There are few studies that have determined the microorganisms responsible for hardaliye fermentation, and these are limited to lactic acid bacteria (LAB) using culture-dependent techniques. The aim of this study was to determine the bacterial dynamics of hardaliye fermentation using a culture-independent approach, high-throughput sequencing of 16S rRNA amplicons. Hardaliye was produced using the traditional method, and samples were taken and analyzed on days 0, 2, 4, 6, and 10 of fermentation. During the fermentation period, pH decreased from 3.65 to 3.23. Amplicon sequencing showed that bacterial diversity was highest at 2 d, and lowest at 10 d, the final day. Although Enterobacteriaceae was the most dominant family at 0 and 2 d, Acetobacteriaceae, specifically Gluconobacter frateurii, became dominant with ~50% relative abundance at 4 d, and increased its abundance to >98% at 6 and 10 d. Although a slight increase in the relative abundance of ~1% (0 d) to ~5% (4 d) was observed in LAB, their presence was limited. This study showed that acetic acid bacteria should not be overlooked in hardaliye fermentation.
Anahtar Kelime: 16S rRNA targeted metagenomics acetic acid bacteria amplicon sequencing fermented foods Gluconobacter frateurii

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aksoy AS, Arici M & Yaman M (2022). The effect of hardaliye on reducing the formation of malondialdehyde during in vitro gastrointestinal digestion of meat products. Food Bioscience 47(4): 101747. doi.org/10.1016/j.fbio.2022.101747
  • Amoutzopoulos B, Löker GB, Samur G, Çevikkalp SA, Yaman M, Köse T & Pelvan E (2013). Effects of a traditional fermented grape-based drink ‘hardaliye’on antioxidant status of healthy adults: a randomized controlled clinical trial. Journal of the Science of Food and Agriculture 93(14): 3604-3610. doi.org/10.1002/jsfa.6158
  • Arici M & Coskun F (2001). Hardaliye: Fermented grape juice as a traditional Turkish beverage. Food Microbiology 18(4): 417-421. doi.org/10.1006/ fmic.2001.0413
  • Arici M, Coşkun F, Çelı̇kyurt G, Mı̇rı̇k M, Gülcü M & Tokatli N (2017). Some technological and functional properties of lactic acid bacteria isolated from hardaliye. Journal of Agricultural Sciences 23(4): 428-437. doi.org/10.15832/ankutbd.385870
  • Aubert C & Chalot G (2018). Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chemistry 240: 524-533. doi.org/10.1016/j.foodchem.2017.07.152
  • Aydogdu H, Yildirim S, Halkman A K & Durgun T (2014). A study on production and quality criteria of hardaliye; a traditional drink from Thrace region of Turkey. Gida (The Journal of Food) 39(3): 193-145. doi.org/10.5505/gida.36844
  • Bartowsky EJ & Henschke P A (2008). Acetic acid bacteria spoilage of bottled red wine—A review. International Journal of Food Microbiology 125(1): 60-70. doi.org/10.1016/j.ijfoodmicro.2007.10.016
  • Bayram M, Esı̇n Y, Kaya C, İlhan M, Akin G & Etdöğer R (2015). Geleneksel yöntemle müşküle üzümünden üretilen hardaliyenin bazı özelliklerinin belirlenmesi. Akademik Gıda 13(2): 119-126.
  • Bokulich N A, Swadener M, Sakamoto K, Mills D A & Bisson L F (2015). Sulfur dioxide treatment alters wine microbial diversity and fermentation progression in a dose-dependent fashion. American Journal of Enology and Viticulture 66(1): 73-79. doi.org/10.5344/ajev.2014.14096
  • Bouchez A & De Vuyst L (2022) Acetic acid bacteria in sour beer production: Friend or foe? Frontiers in Microbiology 13: 957167. doi.org/10.3389/ fmicb.2022.957167
  • Buyukduman E, Kirtil H E, & Metin B (2022). Molecular identification and technological properties of acetic acid bacteria isolated from Malatya apricot and home-made fruit vinegars. Microbiology and Biotechnology Letters 50(1):81-88. doi.org/10.48022/mbl.2109.09017
  • Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich, J K, Gordon, J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, & Knight R (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5): 335-336. doi.org/10.1038/nmeth.f.30
  • Chen G, Chen C & Lei Z (2017). Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends in Food Science & Technology 65: 23-31. doi.org/10.1016/j.tifs.2017.05.002
  • Coskun F (2017). A traditional Turkish fermented non-alcoholic grape-based beverage, “hardaliye.” Beverages 3(1): 2. doi.org/10.3390/ beverages3010002
  • Coskun F & Arici M (2006). The effects of using different mustard seeds and starter cultures on some properties of hardaliye. Annals of Microbiology 56(4): 335-337. doi.org/10.1007/BF03175027
  • Çoşkun F & Arici M (2011). Hardaliyenin bazi ozellikleri üzerine farkli hardal tohumlari ve üzüm cesitleri kullaniminin etkisi. Akademik Gida (Academic Food Journal) 9(3): 6-11.
  • Coşkun F, Arıcı M, Çelikyurt G & Gülcü M (2012). Farklı yöntemler kullanılarak üretilen hardaliyelerin bazı özelliklerinde depolama sonunda meydana gelen değişmeler. Tekirdağ Ziraat Fakültesi Dergisi 9(3): 62-67.
  • De Filippis F, Parente E & Ercolini D (2017). Metagenomics insights into food fermentations. Microbial Biotechnology 10(1): 91-102. doi. org/10.1111/1751-7915.12421
  • De Roos J & De Vuyst L (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49: 115-119. doi. org/10.1016/j.cop bio.2017.08.007
  • De Roos J, Verce M, Aerts M, Vandamme P, De Vuyst L & Schaffner Donald W (2018). Temporal and spatial distribution of the acetic acid bacterium communities throughout the wooden casks used for the fermentation and maturation of Lambic beer underlines their functional role. Applied and Environmental Microbiology 84(7): e02846-17. doi.org/10.1128/AEM.02846-17
  • De Vuyst L & Leroy F (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews 44(4): 432-453. doi.org/10.1093/femsre/fuaa014
  • Ferrocino I, & Cocolin L (2017). Current perspectives in food-based studies exploiting multi-omics approaches. Current Opinion in Food Science, 13; 10-15. doi.org/10.1016/j.cofs.2017.01.002
  • García-García I, Cañete-Rodríguez A M, Santos-Dueñas I M, Jiménez-Hornero J E, Ehrenreich A, Liebl W, García-Martínez T & Mauricio J C (2017). Biotechnologically relevant features of gluconic acid production by acetic acid bacteria. Acetic Acid Bacteria, 6(1): 6458. doi.org/10.4081/ aab.2017.6458
  • Gołębiewski M, & Tretyn A (2020). Generating amplicon reads for microbial community assessment with next-generation sequencing. Journal of Applied Microbiology 128(2): 330-354. doi.org/10.1111/jam.14380
  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M & Glöckner F O (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1): e1. doi.org/10.1093/nar/gks808
  • Li R, Xu Y, Chen J, Wang F, Zou C, & Yin J (2022) Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. LWT 155: 112937. doi.org/10.1016/j.lwt.2021.112937
  • Li W, Fu L, Niu B, Wu S & Wooley J (2012). Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics 13(6): 656-668. doi.org/10.1093/bib/bbs035
  • Lynch K M, Zannini E, Wilkinson S, Daenen L & Arendt E K (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety 18(3): 587-625. doi.org/10.1111/1541-4337.12440
  • Magoč T & Salzberg S L (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21): 2957-2963. doi.org/10.1093/bioinformatics/btr507
  • Martínez-Torres A, Gutiérrez-Ambrocio S, Heredia-del-Orbe P, Villa-Tanaca L & Hernández-Rodríguez C (2017). Inferring the role of microorganisms in water kefir fermentations. International Journal of Food Science & Technology 52(2): 559-571. doi.org/10.1111/ijfs.13312
  • Pehlivanoglu H, Gunduz H H, Ozulku G, Demirci M (2015). An investigation of antimicrobial activity of wheat grass juice,barley grass juice, hardaliye and boza. International Interdisciplinary Journal of Scientific Research 2(1): 8-14.
  • Portillo M del C & Mas A (2016). Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high- throughput barcoding sequencing. LWT - Food Science and Technology 72: 317-321. doi.org/10.1016/j.lwt.2016.05.009
  • Pothakos V, Illeghems K, Laureys D, Spitaels F, Vandamme P & De Vuyst L (2016). Acetic acid bacteria in fermented food and beverage ecosystems. In K. Matsushita H Toyama, N Tonouchi & A Okamoto-Kainuma (Eds.), Acetic Acid Bacteria: Ecology and Physiology pp. 73-99. doi. org/10.1007/978-4-431-55933-7_3
  • Prado FC, Parada JL, Pandey A & Soccol CR (2008). Trends in non-dairy probiotic beverages. Food Research International 41(2): 111-123. doi.10.1016/j.foodres.2007.10.010
  • Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C & Rodríguez-Sanoja R (2020). Omics in traditional vegetable fermented foods and beverages. Critical Reviews in Food Science and Nutrition 60(5): 791-809. doi.org/10.1080/10408398.2018.1551189
  • Rodríguez LGR, Gasga VMZ, Pescuma M, Van Nieuwenhove C, Mozzi F, & Burgos J (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International 140: 109854. doi.org/10.1016/j.foodres.2020.109854
  • Sainz F, Navarro D, Mateo E, Torija M J & Mas A (2016). Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. International Journal of Food Microbiology 222: 40-47. doi.org/10.1016/j.ijfoodmicro.2016.01.015
  • Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J & Weber C F (2009). Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75(23): 7537-7541. doi.org/10.1128/AEM.01541-09
  • Villarreal-Soto S A, Bouajila J, Pace M, Leech J, Cotter P D, Souchard J P, Taillandier P & Beaufort S (2020). Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology 333: 108778. doi.org/10.1016/j.ijfoodmicro.2020.108778
APA Metin B, PEHLIVANOGLU H, YILDIRIM SERVİ E, ARICI M (2023). Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. , 756 - 764. 10.15832/ankutbd.1066364
Chicago Metin Banu,PEHLIVANOGLU HALIME,YILDIRIM SERVİ ESRA,ARICI MUHAMMET Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. (2023): 756 - 764. 10.15832/ankutbd.1066364
MLA Metin Banu,PEHLIVANOGLU HALIME,YILDIRIM SERVİ ESRA,ARICI MUHAMMET Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. , 2023, ss.756 - 764. 10.15832/ankutbd.1066364
AMA Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. . 2023; 756 - 764. 10.15832/ankutbd.1066364
Vancouver Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. . 2023; 756 - 764. 10.15832/ankutbd.1066364
IEEE Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M "Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing." , ss.756 - 764, 2023. 10.15832/ankutbd.1066364
ISNAD Metin, Banu vd. "Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing". (2023), 756-764. https://doi.org/10.15832/ankutbd.1066364
APA Metin B, PEHLIVANOGLU H, YILDIRIM SERVİ E, ARICI M (2023). Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. Tarım Bilimleri Dergisi, 29(3), 756 - 764. 10.15832/ankutbd.1066364
Chicago Metin Banu,PEHLIVANOGLU HALIME,YILDIRIM SERVİ ESRA,ARICI MUHAMMET Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. Tarım Bilimleri Dergisi 29, no.3 (2023): 756 - 764. 10.15832/ankutbd.1066364
MLA Metin Banu,PEHLIVANOGLU HALIME,YILDIRIM SERVİ ESRA,ARICI MUHAMMET Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. Tarım Bilimleri Dergisi, vol.29, no.3, 2023, ss.756 - 764. 10.15832/ankutbd.1066364
AMA Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. Tarım Bilimleri Dergisi. 2023; 29(3): 756 - 764. 10.15832/ankutbd.1066364
Vancouver Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing. Tarım Bilimleri Dergisi. 2023; 29(3): 756 - 764. 10.15832/ankutbd.1066364
IEEE Metin B,PEHLIVANOGLU H,YILDIRIM SERVİ E,ARICI M "Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing." Tarım Bilimleri Dergisi, 29, ss.756 - 764, 2023. 10.15832/ankutbd.1066364
ISNAD Metin, Banu vd. "Bacterial Dynamics of Hardaliye, a Fermented Grape Beverage, Determined by Highthroughput Sequencing". Tarım Bilimleri Dergisi 29/3 (2023), 756-764. https://doi.org/10.15832/ankutbd.1066364