Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi

51 0

Proje Grubu: MFAG Sayfa Sayısı: 65 Proje No: 122F290 Proje Bitiş Tarihi: 01.10.2023 Metin Dili: Türkçe DOI: 122F290 İndeks Tarihi: 12-03-2024

Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi

Öz:
Son yıllarda artan bilimsel ve teknolojik çalışmalar neticesinde, malzeme bilimindeki çalışmalar hız kazanmış ve özellikle nanoteknolojiye olan ilgi artmıştır. Nanomalzemeler de nanoteknolojinin temel taşlarını oluşturmakta ve bu boyutta eşsiz optik, manyetik ve elektriksel özellikler taşımaktadırlar. Nanoteknolojiyi bu kadar ilginç kılan unsur, malzemelerin bu boyutta makro dünyadan farklı davranmalarıdır. Makro boyuttan nano boyuta geçerken geniş yüzey alanı/hacim oranı, iletkenlik, optik ve manyetik özellikleri kayda değer biçimde değişmekte ve geniş bir perspektifte araştırma olanağı sunmaktadır. İki boyutlu (2D) malzeme olan grafenin keşfi nanodetektörlerin geliştirilmesinde öncülük etmiş ve oldukça popüler olmuştur. Grafenin bu popülaritesi beraberinde başka grafen benzeri 2D malzemelerin keşfine yol açmıştır ve farklı özelliklere sahip yeni 2D malzeme arayışının içerisine girilmiştir. Bu alanda son zamanlarda yapılan en önemli keşiflerden birisi tek katmanlı fosforen yapısıdır. Çalışmalar bununla birlikte fosforenin diğer V-A grubu elementleri ile yaptığı bileşiklerin keşfi ile devam etmiştir. Burada ilgi çekici örneklerinden birisi mavi arsenik-fosforen (ß-AsP) yapısıdır. ß-AsP, ayarlanabilir geniş band aralığı, yüksek iletkenlik, yüksek taşıyıcı mobilitesi gibi özellikleri dolayısıyla yeni ve hassas teknolojilerdeki olası kullanılabilirliği bakımından dikkat çekmektedir. Ayrıca, zikzaklı büzüşük yapısı sayesinde yüzey alanı oldukça fazladır ve dolayısıyla da üzerine farklı konfigürasyonlarda yaklaşan molekülleri tutabilme kabiliyeti de yüksektir. Bu da ß-AsP?nin bir alttaş olarak kullanılması durumunda ihtiyaca yönelik çok daha fonksiyonel 2D yapıların ortaya çıkabileceği anlamına gelmektedir. Bu projede, ß-AsP tek katmanlı yüzey ile Glisin ve Serin biyolojik moleküllerinin atomik boyutta etkileşmeleri ilk prensiplere dayalı hesaplamalarla incelenmiştir. En temel aminoasitlerden olan Glisin ve Serin molekülleri pek çok rahatsızlığın tedavi sürecinde önemli rol oynamaktadırlar. Bu nedenle bu moleküllerin dedekte edilebilmeleri ile yapısal deformasyona uğramadan taşınabilmeleri oldukça önemlidir. Bu noktada, ß-AsP?nin bu tip biyolojik moleküller için iyi bir alttaş olup olamayacağının araştırılması önem kazanmıştır. Projedeki hesaplar kuantum mekaniğine dayalı Yoğunluk Fonksiyonel Teorisi (DFT) kullanılarak yapılmıştır. Yazılım olarak dünya çapında yaygın olarak kullanılan Quantum Espresso ve VASP programları kullanılmıştır. Glisin ve Serin moleküllerinin ß-AsP üzerindeki tüm olası adsorpsiyon geometrileri belirlenerek bu konfigürasyonların yapısal ve elektronik özellikleri incelenmiştir.
Anahtar Kelime: Yoğunluk Fonksiyonel Teorisi (DFT) Yapısal ve Elektronik Özellikler QUANTUM ESSPRESSO VASP Yapı Kusurları Hegzagonal bal peteği yapısı tek katmanlı nanoyapılar biyolojik moleküller adsorpsiyon

Investigation of Adsorption of Biological Molecules on Hexagonal Single-layer Arsenic Phosphorene.

Öz:
As a result of increasing scientific and technological studies in recent years, studies in materials science have accelerated and interest in nanotechnology has increased. Nanomaterials also form the basis of nanotechnology and have unique optical, magnetic and electrical properties in this dimension. What makes nanotechnology so interesting is that materials behave differently in this dimension than in the macro world. While passing from the macro dimension to the nano dimension, the large surface area/volume ratio, conductivity, optical and magnetic properties change considerably and thus offer a wide perspective research opportunity. The discovery of graphene, a two-dimensional (2D) material, pioneered the development of nanodetectors and became very popular. This popularity of graphene has led to the discovery of other graphene-like 2D materials, and search for new 2D materials with different properties has begun. One of the most important recent discoveries in this field is the monolayer phosphorene structure. Studies continued with the discovery of compounds formed by phosphorus with other V-A group elements. One of the interesting examples here is the blue arsenic-phosphorene (ß-AsP) structure. ß-AsP, draws attention in terms of its possible usability in new and sensitive technologies due to its features such as adjustable wide band gap, high conductivity, high carrier mobility. Also, thanks to its buckled zigzag structure, its surface area is quite large, and therefore it has a high ability to hold molecules approaching in different configurations. This means that if ß-AsP is used as a substrate, much more functional 2D structures can emerge. In this project, the interactions of the ß-AsP monolayer surface with the biological molecules Glycine and Serine at the atomic scale were investigated with calculations based on first principles. Glycine and Serine molecules, which are among the most basic amino acids, play an important role in the treatment process of many diseases. Therefore, it is very important that these molecules can be detected and transported without undergoing structural deformation. At this point, it has become important to investigate whether ß-AsP can be a good substrate for this type of biological molecules. Calculations in the project were made using Density Functional Theory (DFT) based on quantum mechanics. Quantum Espresso and VASP programs, which are widely used worldwide, were used as software. All possible adsorption geometries of Glycine and Serine molecules on ß-AsP were determined and the structural and electronic properties of these configurations were examined.
Anahtar Kelime: Yoğunluk Fonksiyonel Teorisi (DFT) Yapısal ve Elektronik Özellikler QUANTUM ESSPRESSO VASP Yapı Kusurları Hegzagonal bal peteği yapısı tek katmanlı nanoyapılar biyolojik moleküller adsorpsiyon

Erişim Türü: Bibliyografik
  • Akahama, Y., Endo, S., & Narita, S. I. 1983 “Electrical properties of black phosphorus single crystals” Journal of the Physical Society of Japan, 52(6), 2148-2155.
  • Aghaei, M., Ramezanitaghartapeh, M., Javan, M., Hoseininezhad-Namin, M. S., Mirzaei, H., Rad, A. S., ... & Heidari, F. 2021 “Investigations of adsorption behavior and anti-inflammatory activity of glycine functionalized Al12N12 and Al12ON11 fullerene-like cages” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 119023.
  • Aierken, Y., Çakır, D., Sevik, C., & Peeters, F. M. 2015 “Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach” Physical Review B, 92(8), 081408.
  • Benam, Z. H., Arkin, H., & Aktürk, E. 2017 “Point defects in buckled and asymmetric washboard phases of arsenic phosphorus: A first principles study” Computational Materials Science, 140, 290-298.
  • Blöchl P.E., 1994 “Projector augmented-wave method” Physical Review B 50, 17953-17979.
  • Broyden C.G. 1970 “The convergence of a class of double-rank minimization algorithms” Journal of the Institue of Mathematics and Its Applications 6 76-90.
  • Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J. O., Narasimha-Acharya, K. L., Blanter, S. I., ... & Van Der Zant, H. S. 2014 “Isolation and characterization of few-layer black phosphorus” 2D Materials, 1(2), 025001.
  • Chaudhuri, P., Lima, C. N., Frota, H. O., & Ghosh, A. 2021 “Density functional study of glycine adsorption on single-walled BN nanotubes” Applied Surface Science, 536, 147686.
  • Chen, C., Boota, M., Urbankowski, P., Anasori, B., Miao, L., Jiang, J., & Gogotsi, Y. 2018 “Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage” Journal of Materials Chemistry A, 6(11), 4617-4622.
  • Correa, J. D., & Orellana, W. (2012). Optical response of carbon nanotubes functionalized with (free-base, zn) porphyrins, and phthalocyanines: A dft study. Physical Review B, 86(12), 125417.
  • Dey, A., & Chakraborty, D. 2021 “Engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration Journal of Nanoscience and Nanotechnology, 21(12), 5929-5936.
  • Ekrami, M., Magna, G., Emam-Djomeh, Z., Saeed Yarmand, M., Paolesse, R., & Di Natale, C. (2018). Porphyrin-functionalized zinc oxide nanostructures for sensor applications. Sensors, 18(7), 2279.
  • Erdmann, O. L. 1865, Journal für praktische Chemie (Vol. 61). Verlag von Johann Ambrosius Barth.
  • Ersan, F., Aktürk, E., & Ciraci, S. 2019 “Glycine self-assembled on graphene enhances the solar absorbance performance” Carbon, 143, 329-334.
  • Ersan, F., Gökçe, A. G., & Aktürk, E. 2016 “Point defects in hexagonal germanium carbide monolayer: A first-principles calculations” Applied Surface Science, 389, 1-6.
  • Ersan, F., Keçik, D., Özçelik, V. O., Kadioglu, Y., Aktürk, O. Ü., Durgun, E., ... & Ciraci, S. 2019 “Two-dimensional pnictogens: A review of recent progresses and future research directions” Applied Physics Reviews, 6(2), 021308.
  • Feng, C., Qin, H., Yang, D., & Zhang, G. 2019 “First-principles investigation of the adsorption behaviors of CH2O on BN, AlN, GaN, InN, BP, and P monolayers” Materials, 12(4), 676.
  • Feynman, R.P.,1939 “Forces in Molecules” Physical Review 56 340.
  • Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., Dal Corso A., Fabris S., Fratesi G.,de Gironcoli S., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin-samsos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasuarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A. P., Smogunov A., Umari P., Wentzcovitch R. M., 2009, “QUANTUM ESPRESSO: a modular and open source software project for quantum simulations of materials” Journal of Physics: Condensed Matter,21,395502.
  • Gorkan, T., Arkin, H., & Aktürk, E. (2022). Influence of doping with selected organic molecules on the magnetic and electronic properties of bare, surface terminated and defect patterned Ti 2 C MXene monolayers. Physical Chemistry Chemical Physics, 24(4), 2465-2475.
  • Gouveia, J. D., Novell-Leruth, G., Reis, P. M., Viñes, F., Illas, F., & Gomes, J. R. (2020). First- principles calculations on the adsorption behavior of amino acids on a titanium carbide MXene. ACS Applied Bio Materials, 3(9), 5913-5921.
  • Gupta, A., Sakthivel, T., & Seal, S. 2015 “Recent development in 2D materials beyond graphene” Progress in Materials Science, 73, 44-126.
  • Hamann D.R., Schlüter M., Chiang,C. 1979 “Norm-Conserving Pseudopotentials” Physical Review Letters, 43, 1494-1497.
  • Han, W. H., Kim, S., Lee, I. H., & Chang, K. J. 2017 “Prediction of green phosphorus with tunable direct band gap and high mobility” The journal of physical chemistry letters, 8(18), 4627-4632.
  • Hestenes, M. R., Stiefel E., 1952 “Methods of Conjugate Gradients for Solving Linear Systems” Journal of Research of the National Bureau of Standards 49(6).
  • Hohenberg, P., & Kohn, W. 1964 “Inhomogeneous electron gas” Physical review, 136(3B), B864.
  • Iordanidou, K., Kioseoglou, J., Afanas’ev, V. V., Stesmans A., Houssa, M. (2017). Intrinsic point defects in buckled and puckered arsenene: a first-principles study. Phys.Chem.Chem.Phys., 19, 9862.
  • Jakubke, H. D., & Jeschkeit, H. 1982. Aminosäuren, Peptide, Proteine. Verlag Chemie.
  • John P. Perdew, Kieron Burke, Matthias Ernzerhof 1996 “Generalized Gradient Approximation Made Simple” Physical Review Letters,77,3865-3868.
  • Kamal, C., & Ezawa, M. 2015 “Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems” Physical Review B, 91(8), 085423.
  • Karachevtsev, V. A., Stepanian, S. G., Karachevtsev, M. V., & Adamowicz, L. (2018). Graphene induced molecular flattening of meso-5, 10, 15, 20-tetraphenyl porphyrin: DFT calculations and molecular dynamics simulations. Computational and Theoretical Chemistry, 1133, 1-6.
  • Kecik, D., Durgun, E., & Ciraci, S. 2016 “Stability of single-layer and multilayer arsenene and their mechanical and electronic properties” Physical Review B, 94(20), 205409.
  • Kohn, W., & Sham, L. J. 1965 “Self-consistent equations including exchange and correlation effects” Physical review, 140(4A), A1133.
  • Kresse G., Furthmüller J., 1996 “VASP (Vienna An Initio Simulation Package)” Phys. Rev. B 54, 11169.
  • Lakard, B. (2004). Ab initio study of amino acids containing hydroxy groups (serine, threonine and tyrosine). Journal of Molecular Structure: THEOCHEM, 681(1-3), 183-189.
  • Larijani, H. T., Ganji, M. D., & Jahanshahi, M. J. R. A. 2015 “Trends of amino acid adsorption onto graphene and graphene oxide surfaces: a dispersion corrected DFT study” RSC advances, 5(113), 92843-92857.
  • Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., ... & Zhang, Y. 2014 “Black phosphorus field- effect transistors” Nature nanotechnology, 9(5), 372-377.
  • Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., & Ye, P. D. 2014 “Phosphorene: an unexplored 2D semiconductor with a high hole mobility” ACS nano, 8(4), 4033-4041.
  • MacKay, M. A. B., Kravtsenyuk, M., Thomas, R., Mitchell, N. D., Dursun, S. M., & Baker, G. B. 2019 “D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression” Frontiers in psychiatry, 10, 25.
  • Maddocks, O. D., Athineos, D., Cheung, E. C., Lee, P., Zhang, T., van den Broek, N. J., ... & Vousden, K. H. 2017 “Modulating the therapeutic response of tumours to dietary serine and glycine starvation” Nature, 544(7650), 372-376.
  • Madeira, C., Lourenco, M. V., Vargas-Lopes, C., Suemoto, C. K., Brandão, C. O., Reis, T., ... & Panizzutti, R. 2015 “d-serine levels in Alzheimer’s disease: implications for novel biomarker development” Translational psychiatry, 5(5), e561-e561.
  • Mao, C. M., Sampath, J., Sprenger, K. G., Drobny, G., & Pfaendtner, J. 2019 “Molecular driving forces in peptide adsorption to metal oxide surfaces” Langmuir, 35(17), 5911-5920.
  • Monkhorst H., J., Pack J.D., 1976 “Special points for Brillouin-zone integrations” Physical Review B 13,5188-5192.
  • Muhammad, N., Muzaffar, M. U., & Ding, Z. 2021 “Black Phosphorene/Blue Phosphorene van der Waals Heterostructure: A Potential Anode Material for Lithium-Ion Batteries” Physical Chemistry Chemical Physics.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 750, Glycine. https://pubchem.ncbi.nlm.nih.gov/compound/Glycine Son erişim tarihi: 8 Eylül 2021. National Center for Biotechnology Information. PubChem Compound Summary for CID 5951, Serine. https://pubchem.ncbi.nlm.nih.gov/compound/Serine. Son Erişim Tarihi: 7 Ağustos 2021
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. 2004 “Electric field effect in atomically thin carbon films” science, 306(5696), 666- 669.
  • Ozdemir, I., Ozaydin, H. D., Arkin, H., & Aktürk, E. 2019 “Functionalization of monolayer AsP phases by adatoms: a first-principles study” Materials Research Express, 6(6), 065032.
  • Perdew, J. P., Burke, K., & Ernzerhof, M. 1996 “Generalized gradient approximation made simple” Physical review letters, 77(18), 3865.
  • Prasert, K., & Sutthibutpong, T. 2020 “Effects of L-serine amino acid functionalization on electronic properties of a graphene plane in comparison with oxygen functionalization” Journal of Molecular Modeling, 26(8), 1-9.
  • Razak, M. A., Begum, P. S., Viswanath, B., & Rajagopal, S. 2017 “Multifarious beneficial effect of nonessential amino acid, glycine: a review” Oxidative medicine and cellular longevity, 2017.
  • Ren, H., Kulkarni, D. D., Kodiyath, R., Xu, W., Choi, I., & Tsukruk, V. V. 2014 “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide” ACS applied materials & interfaces, 6(4), 2459-2470.
  • Roman, T., Diño, W. A., Nakanishi, H., & Kasai, H. 2006 “Glycine adsorption on single-walled carbon nanotubes” Thin Solid Films, 509(1-2), 218-222.
  • Roondhe, B., & Jha, P. K. 2019 “Neurotransmitter-functionalized boron nitride nanoribbons as biological cargo carriers: Analysis by density functional theory” ACS Applied Nano Materials, 2(3), 1552-1561.
  • Rossi-Fernández, A. C., Villegas-Escobar, N., Guzmán-Angel, D., Gutiérrez-Oliva, S., Ferullo, R. M., Castellani, N. J., & Toro-Labbé, A. 2020 “Theoretical study of glycine amino acid adsorption on graphene oxide” Journal of molecular modeling, 26(2), 1-10.
  • Safari, F., Moradinasab, M., Schwalke, U., & Filipovic, L. 2021 “Superior Sensitivity and Optical Response of Blue Phosphorene and Its Doped Systems for Gas Sensing Applications” ACS Omega.
  • Soltani, A., Taghartapeh, M. R., Erfani-Moghadam, V., Javan, M. B., Heidari, F., Aghaei, M., & Mahon, P. J. 2018 “Serine adsorption through different functionalities on the B12N12 and Pt-B12N12 nanocages” Materials Science and Engineering: C, 92, 216-227.
  • Sousa, C. A., Pereira, C., Rodriguez-Borges, J. E., & Freire, C. 2015 “l-Serine functionalized clays: preparation and characterization” Polyhedron, 102, 121-129.
  • Sullivan, M. R., Mattaini, K. R., Dennstedt, E. A., Nguyen, A. A., Sivanand, S., Reilly, M. F., ... & Vander Heiden, M. G. 2019 “Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting” Cell metabolism, 29(6), 1410-1421.
  • Sun, M., Chou, J.-P., Hu, A., Schwingenschlögl, U. (2019). Point defects in blue phosphorene. Chem. Mater, 31, 8129-8135.
  • Suvarnaphaet, P., & Pechprasarn, S. “2017 “Graphene-based materials for biosensors: a review” Sensors, 17(10), 2161.
  • The Nobel Prize. “The Nobel Prize in Physics 2010”. https://www.nobelprize.org/prizes/physics/2010/summary/. 23 Ağustos 2021.
  • Vanderbilt D., 1990 “Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism” Physical Review B41 (Rapid Communications), 7892.
  • Vantourout, J. C., Adusumalli, S. R., Knouse, K. W., Flood, D. T., Ramirez, A., Padial, N. M., ... & Baran, P. S. 2020 “Serine-selective bioconjugation” Journal of the American Chemical Society, 142(41), 17236-17242.
  • Wang, Q., Wang, M. H., Wang, K. F., Zhao, Y. C., Wang, W. L., & Zhang, L. P. 2016. Interactions of anionic and neutral serine with pure and metal-doped graphene studied by density functional theory. Chinese Journal of Chemical Physics, 29(4), 437.
  • Xie, J., Si, M. S., Yang, D. Z., Zhang, Z. Y., & Xue, D. S. 2014 “A theoretical study of blue phosphorene nanoribbons based on first-principles calculations” Journal of Applied Physics, 116(7), 073704.
  • Ying, Z., Wen, Y., Peng, Z., Chang-Ye, X., Sheng-Hao, H., & Ji-Chen, L. 2005 “Vibrational analysis of L-serine using the density functional theory” Chinese Physics, 14(12), 2585.
  • Zeng, J., Chen, K. Q., & Tong, Y. X. (2018). Covalent coupling of porphines to graphene edges: quantum transport properties and their applications in electronics. Carbon, 127, 611-617.
  • Zhang, H. 2018 “Introduction: 2D materials chemistry” Chemical reviews, 118(13), 6089-6090.
  • Zhang, H. P., Lin, X. Y., Lu, X., Wang, Z., Fang, L., & Tang, Y. 2017 “Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials” Materials Chemistry Frontiers, 1(6), 1156-1164.
  • Zhao, W. W., Xu, J. J., & Chen, H. Y. 2017 “Photoelectrochemical enzymatic biosensors” Biosensors and bioelectronics, 92, 294-304.
  • Zhao, Y. L., Wang, C. H., Zhai, Y., Zhang, R. Q., & Van Hove, M. A. 2014 “Selective adsorption of L-serine functional groups on the anatase TiO2 (101) surface in benthic microbial fuel cells” Physical Chemistry Chemical Physics, 16(38), 20806-20817.
  • Zhiani, R. 2017 “Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study” Applied Surface Science, 409, 35-44.
  • Zhou, Y. H., Li, Y., Zheng, X., & Chen, K. (2021). The effects of covalent coupling strength on the electron transport properties and rectification in graphene/porphine/graphene molecular junctions. Physica E: Low-dimensional Systems and Nanostructures, 134, 114867.
  • Zhu, Z., & Tománek, D. 2014 “Semiconducting layered blue phosphorus: a computational study” Physical review letters, 112(17), 176802.
APA Arkin H, Kaderoglu C, TERCAN O (2023). Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. , 0 - 65. 122F290
Chicago Arkin Handan,Kaderoglu Cagil,TERCAN OKAY Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. (2023): 0 - 65. 122F290
MLA Arkin Handan,Kaderoglu Cagil,TERCAN OKAY Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. , 2023, ss.0 - 65. 122F290
AMA Arkin H,Kaderoglu C,TERCAN O Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. . 2023; 0 - 65. 122F290
Vancouver Arkin H,Kaderoglu C,TERCAN O Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. . 2023; 0 - 65. 122F290
IEEE Arkin H,Kaderoglu C,TERCAN O "Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi." , ss.0 - 65, 2023. 122F290
ISNAD Arkin, Handan vd. "Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi". (2023), 0-65. https://doi.org/122F290
APA Arkin H, Kaderoglu C, TERCAN O (2023). Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. , 0 - 65. 122F290
Chicago Arkin Handan,Kaderoglu Cagil,TERCAN OKAY Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. (2023): 0 - 65. 122F290
MLA Arkin Handan,Kaderoglu Cagil,TERCAN OKAY Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. , 2023, ss.0 - 65. 122F290
AMA Arkin H,Kaderoglu C,TERCAN O Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. . 2023; 0 - 65. 122F290
Vancouver Arkin H,Kaderoglu C,TERCAN O Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi. . 2023; 0 - 65. 122F290
IEEE Arkin H,Kaderoglu C,TERCAN O "Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi." , ss.0 - 65, 2023. 122F290
ISNAD Arkin, Handan vd. "Biyolojik Moleküllerin Arsenik Fosforen Tek Katmanlı Hegzagonal Yüzey Üzerine Adsorpsiyonunun İncelenmesi". (2023), 0-65. https://doi.org/122F290