Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi

6 4

Proje Grubu: MFAG Sayfa Sayısı: 132 Proje No: 122F275 Proje Bitiş Tarihi: 01.10.2023 Metin Dili: Türkçe DOI: 122F275 İndeks Tarihi: 12-03-2024

Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi

Öz:
Transfer reaksiyonları nükleer yapının incelenmesinde önemli bir rol oynamaktadır. Tek nötron transferini içeren soyma (stripping) ve koparma (pick-up) reaksiyonlarının incelenmesinden elde edilen sonuçlar tek parçacık durumlarını tanımlayarak nükleer kabuk modelinin doğrulanmasına yardımcı olmaktadır. Bir protonun aktarıldığı reaksiyonlar ise proton tek parçacık durumları hakkında benzer bilgiler sağlar. Transfer reaksiyonları aynı zamanda deneysel nükleer astrofizik alanında da çok önemlidir. Örneğin laboratuvarda üretilmesi zor veya imkânsız olan yıldız reaksiyonlarında oluşturulan çekirdekleri aynı ilgilenilen çekirdeği üretmek ve incelemek için transfer reaksiyonları alternatif bir yol sağlar. Buna ek olarak rezonans reaksiyonlarında yer alan nükleer durumların kısmi bozunum genişliklerini belirlemek ve doğrudan yakalama reaksiyonunun tesir kesitini değerlendirmek için yaygın olarak kullanılmaktadır. Projede, transfer reaksiyonlarının eş zamanlı olarak yoğunluk dağılımı, sıcaklık, nükleer potansiyel ve nükleon-nükleon etkileşimlerine bağlı olarak değişimleri incelenmiştir. Bu kapsamda proje dört aşamadan oluşmaktadır. Birinci aşamada her bir transfer reaksiyonu için giriş kanalına göre sıcaklığa bağlı olmayan farklı yoğunluk dağılımları incelenerek uygun yoğunluk dağılımları önerilmiştir. İkinci aşamada sıcaklığa bağlı yoğunluk dağılımı kullanılarak tüm transfer reaksiyonların sıcaklıkla değişimleri incelenmiştir. Üçüncü aşamada çeşitli nükleer potansiyeller için transfer reaksiyonları analiz edilerek alternatif nükleer potansiyeller önerilmiştir. Son olarak farklı nükleon-nükleon etkileşimleri kullanılarak transfer reaksiyonları incelenmiş ve en çok kullanılan nükleon-nükleon etkileşimlerinden olan M3Y için alternatif nükleon-nükleon etkileşimleri önerilmiştir.
Anahtar Kelime: Transfer Reaksiyonu Yoğunluk Dağılımı Nükleer Potansiyel Nükleon-Nükleon Etkileşimi

Investigation of Transfer Reactions Based on Temperature, Density Distribution, Nuclear Potential and Nucleon-Nucleon Interactions

Öz:
Transfer reactions play an important role in the study of nuclear structure. Results obtained from the study of stripping and pick-up reactions involving single neutron transfer help validating the nuclear shell model by describing single particle states. Reactions in which a proton is transferred provide similar information about proton single particle states. Transfer reactions are also very important in the field of experimental nuclear astrophysics. For example, transfer reactions provide an alternative way to produce and study the same nuclei of interest as nuclei formed in stellar reactions that are difficult or impossible to produce in the laboratory. In addition, it is widely used to determine the partial decay widths of nuclear states involved in resonance reactions and to evaluate the cross section of direct capture reaction. In the project, the changes of transfer reactions depending on density distribution, temperature, nuclear potential and nucleon-nucleon interactions were examined simultaneously. In this context, the project consists of four stages. In the first stage, different density distributions that are temperature-independent according to the entrance channel were examined for each transfer reaction and appropriate density distributions were suggested. In the second stage, the changes in all transfer reactions with temperature were investigated using the temperature-dependent density distribution. In the third stage, transfer reactions for various nuclear potentials were analyzed and alternative nuclear potentials were suggested. Finally, transfer reactions were examined using different nucleon-nucleon interactions and alternative nucleon-nucleon interactions were proposed for M3Y, which is one of the most used nucleon-nucleon interactions.
Anahtar Kelime: Transfer Reaksiyonu Yoğunluk Dağılımı Nükleer Potansiyel Nükleon-Nükleon Etkileşimi

Erişim Türü: Erişime Açık
  • Abramovich, S. N., Guzhovsky, B. Ya., Zherebtsov, B. A., Zvenigorodsky, A. G., 1989. “Yaderno-fisicheskie Konstanty Termoyadernogo Sinteza”, in Russian, Moscow. Abul-Magd, A. Y., El-Nadi, M. 1966. “Optical Model Parameters for Composite Particles”, Progress of Theoretical Physics, 35, 798–808.
  • Ade, P. A. R., Ade, Aghanim, N., Akrami, Y., Alves, M. I. R., Arguëso, F., Arnaud, M., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C. et al. 2016. “IV. Low Frequency Instrument beams and window functions”, Astron. Astrophys. 594, A4.
  • Akyüz, Ö., Winter, A. “Proceedings of the International School of Physics” “Enrico Fermi”, Course LXXVII, Varenna, Italy, 1979, Ed. by R.A. Broglia, C.H. Dasso, R. Richi (North-Holland, 1981), p. 492.
  • Al-Farra, A. K. A. R. 2004. “Analysis of One-Nucleon Transfer Cross-Sections”, Turk. J. Phys. 28, 169-174.
  • Applegate, J. H., Hogan, C. J. 1985. “Relics of cosmic quark condensation”, Phys. Rev. D, 31, 3037–3045.
  • Auton, D. L. 1970. “Direct reactions on 10Be”, Nucl. Phys. A 157, 305.
  • Aygun, M., Kucuk, Y., Boztosun, I., Ibraheem, A. A. 2010. “Microscopic few-body and Gaussian-shaped density distributions for the analysis of the 6He exotic nucleus with different target nuclei”, Nucl. Phys. A 848, 245 (2010).
  • Aygun, M. 2012. “Double-folding analysis of the 6Li + 58Ni reaction using the ab initio density distribution”, Eur. Phys. J. A 48, 145.
  • Aygun, M. 2013. “Reanalysis of Elastic Scattering of 6Li + 209Bi Reaction Using a New Density Distribution of 6Li Nucleus”, Commun. Theor. Phys. 60, 69.
  • Aygun, M. 2014. “A Microscopic Analysis of Elastic Scattering of 8Li Nucleus on Different Target Nuclei”, Acta Phys. Pol. B 45, 1875.
  • Aygun, M. 2017. “A comparative analysis of the density distributions and the structure models of 9Li”, Pramana 88, 53.
  • Aygun, M., Aygun, Z. 2017. “A theoretical study on different cluster configurations of the 9Be nucleus by using a simple cluster model”, Nucl. Sci. Tech. 28, 86.
  • Aygun, M., Aygun, Z. 2019. “A comprehensive analysis of 9Li + 70Zn fusion cross section by using proximity potentials, temperature dependent density distributions and nuclear potentials”, Rev. Mex. Fis. 65, 573.
  • Azhari, A., Burjan, V., Carstoiu, F., Gagliardi, C. A., Kroha, V., Mukhamedzhanov, A. M., Tang, X., Trache, L., Tribble, R. E. 1999. “The 14N(7Be,8B)13C reaction and the 7Be(p,γ)8B S factor”, Phys. Rev. C 60 055803.
  • Bandyopadhyay, D., Samaddar, S. K., Saha, R., De, J. N. 1992. “Fusion limited by temperature”, Nucl. Phys. A, 539, 370-380.
  • Bardayan, D. W. 2015. “Recent experimental progress in nuclear astrophysics”, Phys. Proc., 66, 457.
  • Bardayan, D. W., Chipps, K. A., Ahn, S., Blackmon, J. C., deBoer, R. J., Greife, U., et al. 2015. “The first science result with the JENSA gas-jet target: confirmation and study of a strong subthreshold F(p,α)O resonance”, Phys. Lett. B 751, 311–315.
  • Bardayan, D. 2016. “Transfer reactions in nuclear astrophysics”, Journal of Physics G: Nuclear and Particle Physics, 43(4), 043001.
  • Basak, A. K., Karban, O., Roman S., Morrison, G. C., Blyth, C. O., Nelson, J. M. 1981. “Polarization effects in 3He induced transfer reactions on lithium isotopes”, Nucl. Phys. A 368, 93.
  • Bass, R. 1973. “Threshold and angular momentum limit in the complete fusion of heavy ions”, Phys. Lett. B, 47, 139-142.
  • Bass, R. 1974. “Fusion of heavy nuclei in a classical model”, Nucl. Phys. A, 231, 45-63.
  • Bass, R. 1977. “Nucleus-nucleus potential deduced from experimental fusion cross sections”, Phys. Rev. Lett., 39, 265-268.
  • Bém, P., Burjan, V., Kroha, V., Novák, J., Piskoř, Š., Šimečková, E., Vincour, J., Gagliardi, C. A., Mukhamedzhanov, A. M., Tribble, R. E. 2000. “Asymptotic normalization coefficients for 14N-13C + p from 13C(3He,d)14N”, Phys. Rev. C, 62, 024320.
  • Bertulani, C. A., Danielewicz, P. 2004. “Introduction to nuclear reactions”, IOP, Bristol. Biswal, S. K., Singh, S. K., Bhuyan, M., Patra, S. K. 2015. “The Effects of self interacting isoscalar-vector meson on finite nuclei and infinite nuclear matter”, Braz. J. Phys., 45, 347– 352.
  • Błocki, J., Randrup, J., Świątecki, W. J., Tsang, C. F. 1977. “Proximity forces”, Ann. Phys. (NY), 105, 427-462.
  • Bobbitt, J. R., Etten, M. P., Lenz, G. H. (1973). “A Study Of 14N Using The 13C(d,n)14N Reaction”, Nucl. Phys. A, 203, 353- 368.
  • Boguta, J., Bodmer, A.R. 1977. “Relativistic calculation of nuclear matter and the nuclear surface”, Nucl. Phys. A, 292, 413.
  • Boyd, R. N. 2008. “An introduction to nuclear astrophysics”, The University of Chicago Press, Chicago.
  • Brack, M., Quentin, P. 1974. “Selfconsistent calculations of highly excited nuclei”, Phys. Lett. B, 52, 159.
  • Buck, B., Hodgson, P. E. 1961. “The analysis of (d, p) stripping reactions by the distorted wave born approximation”, Philos. Mag. 6(71), 1371-1384.
  • Burtebayev, N., Burtebayeva, J. T., Glushchenko, N. V., Kerimkulov, Zh. K, Amar, A., Nassurlla, M., Sakuta, S. B., Artemov, S. V., Igamov, S. B., Karakhodzhaev, A. A., Rusek, K., Kliczewski, S. 2013. “Effects of t- and α-transfer on the spectroscopic information from the 6Li(3He, d)7Be reaction”, Nucl. Phys. A 909, 20.
  • Burtebayev, N., Kerimkulov, Zh. K, Nassurlla, M., Burtebayeva, J. T., Nassurlla, M, Sakuta, S. B., Suziki T., Rusek, K., Kliczewski, S., Trzcińska, A., Wolińska-Cichocka, M. 2015. “Study of the 7Li(d,t)6Li Reaction at the Energy of 14.5 MeV”, Acta Phys. Pol. B 46, 1037.
  • Burtebayev, N., Hamada, Sh., Ibraheem, A. A., Rusek, K., Wolinska-Cichocka, M., Burtebayev, J., Amangeldi, N., Nassurlla, M., Nassurlla, M., Sabidolda, A. 2019. “Effect of the Transfer Reactions for 16O+10B Elastic Scattering”, Acta Phys. Pol. B 50, 1423.
  • Calvert, J. M., Jaffe, A. A., Maslie, E. E. (1956). “An Investigation of the Reactions 12C(d,n)13N and 28Si(d,n)29P”,
  • Chamon, L. C., Carlson, B. V., Gasques, L. R., Pereira, D., Conti, D. C., Alvarez, M. A. G., Hussein, M. S., Cândido Ribeiro, M. A., Rossi, E. S., Jr., Silva, C. P. 2002. “Toward a global description of the nucleus-nucleus interaction”, Phys. Rev. C, 66, 014610.
  • Chipps, S. S., Hammache, F., de Séréville, N., Roussel, P., Burgunder, J., Moukaddam, M., et al. 2017. “Spectroscopy of Fe via the neutron transfer reaction H(Fe,p)Fe”, Phys. Rev. C, 95, 035806.
  • Christensen, P. R., Winther, A. 1976. “The evidence of the ion-ion potentials from heavy ion elastic scattering”, Phys. Lett. B, 65, 19-22.
  • Chwieroth, F. S., Tang, Y. C., Thompson, D. R. 1974. “Microscopic coupled-channel study of the five-nucleon system with the resonating-group method”, Phys. Rev. C 9, 56.
  • Clayton, D. 1983. “Principles of stellar evolution and nucleosynthesis”, The University of Chicago Press, Chicago and London.
  • Coc, A., Goriely, S., Xu, Y., Saimpert, M., Vangioni, E. 2012. “Standard Big Bang nucleosynthesis up to CNO wıth an improved extended nuclear network”, Astrophys. J. 744, 158.
  • Cook, J. 1982. “DFPOT - A program for the calculation of double folded potentials”, Comput. Phys. Commun., 25, 125-139.
  • Cookson, J. A. (1968). “The 13C(d,n)14N Reactıon”, Phys. Lett. B 27, 10.
  • Daehnick, W. W., Childs, J. D., Vrcelj, Z. 1980. “Global optical model potential for elastic deuteron scattering from 12 to 90 MeV”, Phys. Rev. C 21, 2253.
  • Deltuva, D. 2015. “Core excitation in three-body nuclear reactions: Improved nucleon-core potential”, Phys. Rev. C 91, 024607.
  • Descouvemont, P. 2022. “A semi-microscopic approach to transfer reactions”, Eur. Phys. J. A 58, 193.
  • de Séréville, N., Coc, A., Angulo, C., Assunção, M., Beaumel, D., Berthoumieux, E., et al. 2007. “Indirect study of Ne states near the F+p threshold”, Nucl. Phys., 791, 251–266.
  • Douglas, R. A., Gasten, B. R., Mukerji, A. 1956. “Production and Properties of C15”, Can. J. Phys. 34, 1097.
  • Endt, P. M., Enge, H. A., Haffner, J., Buechner, W. W. 1952a. “Excited States of Mg25 from the Al27(d,α)Mg25 and Mg24(d,p)Mg25 Reactions”, Phys. Rev. 87, 27.
  • Endt, P. M., Haffner, J. W., Van Patter, D. M. 1952b. “Magnetic Analysis of the Mg25(d,p)Mg26, Mg26(d,p)Mg27, and Mg25(d,α)Na23 Reactions”, Phys. Rev. 86, 518.
  • Febbraro, M. T. 2014. “A Deuterated Neutron Detector Array for the Study of Nuclear Reactions with Stable and Rare Isotope Beams”, Doctor of Philosophy, the University of Michigan.
  • Fields, B. D. 2011. “The primordial lithium problem”, Annu. Rev. Nucl. Part. Sci. 61, 47.
  • Fuchs, H., Grabısch, K., Kraaz, P., RöSchert, G. (1966). “Shell Model Confıguratıons of States In 14N Studied By The 13C(d,n)14N Reaction”, Phys. Lett. 23, 6.
  • Ghodsi, O. N., Torabi, F. 2015. “Comparative study of fusion barriers using skyrme interactions and the energy density functional”, Phys. Rev. C, 92, 064612.
  • Glendenning, N.K. 2004. “Direct nuclear reactions”, World Scientific, Singapore. Green, L. L. , Scanlont J. P., Willmott, J. C. (1955). “Angular Distributions from (d, n) Reactions at 0.86 MeV Deuteron Energy”, Proc. Phys. Soc. A 68, 386.
  • Guo-Qiang, L., Gong-Ou, X. 1990. “Optical potential and the fusion barrier of two hot nuclei”, Phys. Rev. C 41, 169.
  • Gupta, R. K., Singh, D., Greiner, W. 2007. “Semiclassical and microscopic calculations of the spin-orbit density part of the skyrme nucleus-nucleus interaction potential with temperature effects included”. Phys. Rev. C, 75, 024603.
  • Gupta, R. K., Singh, D., Kumar, R., Greiner, W. 2009. “Universal functions of nuclear proximity potential for skyrme nucleus–nucleus interaction in a semiclassical approach”, J. Phys. G: Nucl. Part. Phys., 36, 075104.
  • Hamada, Sh. 2019. “Coupled Reaction Channels and Cluster Folding Analysis for 3He + 20Ne Elastic and Inelastic Scattering”, Phys. Part. Nucl. Lett. 16, 602.
  • Hammache, F., de Séréville N. 2021. “Transfer reactions as a tool in nuclear astrophysics”, Front. Phys., 8, 602920.
  • Hinds, S., Marchant, H., Middleton, R. 1961. “The Energy Levels of the Magnesium Isotopes of Mass 25 to 28”, Proc. Phys. Soc. 78, 473.
  • Hinds, S., Middleton, R., Parry, G. 1958. “An Investigation of the Reactions 24Mg(d,p)25Mg and 26Mg(d,p)27Mg by Magnetic Analysis”, Proc. Phys. Soc. 71, 49.
  • Holt, J. R, Marsham, T. N. 1953. “An Investigation of (d,p) Stripping Reactions II: Results for the Isotopes of Magnesium”, Proc. Phys. Soc. A 66, 258.
  • Horowitz, J., Messiah, A. M. L. 1953. “The mechanism of stripping reactions”, Phys. Rev., 92, 1326-1327.
  • Horvath, A., Weiner, J., Galonsky, A., Deak, F., Higurashi, Y., Ieki, K., Iwata, Y., Kiss, A., Kolata, J. J., Seres, Z., von Schwarzenberg, J., Schelin, H., Takeuchi, S., Typel, S., Warner, R. E. 2002. “Cross section for the astrophysical 14C(n,γ)15C reaction via the inverse reaction”, Astrophys. J., 570(2), 926–933.
  • Jaszczak, R. J., Macklin, R. L., Gibbons, J. H. (1969). “12C(d,n)13N total cross section from 1.2 to 4.5 MeV”, Phys. Rev. 181, 1428.
  • Kawamura, T., et al, 1986. “Annual Report 10” Cyclotron and Radioisotope Center, Tohoku University.
  • Koning, A. J., Delaroche, J. P. 2003. “Local and global nucleon optical models from 1 keV to 200 MeV”, Nucl. Phys. A 713, 231.
  • Kozub, R. L., Arbanas, G., Adekola, A. S., Bardayan, D. W., Blackmon, J. C., Chae, K. Y., et al. 2012. “Neutron single particle structure in 131Sn and direct neutron capture cross sections”, Phys. Rev. Lett., 109, 172501.
  • La Rana, G., Ngȏ, C., Faessler, A., Rikus, L., Sartor, R., Barranco, M., Vias, X. 1984. “Heavy- ion optical potentials at finite temperature calculated using a complex effective interaction derived from a realistic force”, Nucl. Phys. A, 414, 309-315.
  • Lalazissis, G. A., König, J., Ring, P. 1997. “New parametrization for the Lagrangian density of relativistic mean field theory”, Phys. Rev. C, 55, 540.
  • Lalazissis, G., Karatzikos, S., Fossion, R., Arteaga, D.P., Afanasjev, A., Ring, P. 2009. “The effective force NL3 revisited”, Phys. Lett. B, 671, 36.
  • Lamkin, K. 1996. “The study of the d+8Li reaction at astrophysical energies”, Doctor of Philosophy, Department of Physics Notre Dame.
  • Lawrence, E. O., Livingston, M. S., Lewis, G. N. 1993. “The emission of protons from various targets bombarded by deutons of high speed”, Phys. Rev., 44, 56-56.
  • Lee, D. W., Powell, J., Peräjärvi, K., Guo, F. Q., Moltz, D. M., Cerny, J. 2011. “Study of the 11C(p,γ) reaction via the indirect d(11C,12N)n transfer reaction”, J. Phys. G: Nucl. Part. Phys. 38, 075201.
  • Lee, L. L., Jr., Schiffer, J. P., Zeidman, B., Satchler, G. R., Drisko, R. M., Bassel, R. H. 1964. “40Ca(d,p)41Ca, a test of the validity of the distorted-wave born approximation”, Phys. Rev., 136, B971.
  • Lee, J., Tsang, M. B., Lynch, W. G. 2007. “Neutron spectroscopic factors from transfer reactions”, Phys. Rev. C 75, 064320.
  • Li, W. J., Ma, Y. G., Zhang, G. Q. et al. (2019). “Yield ratio of neutrons to protons in 12C(d,n)13N and 12C(d,p)13C from 0.6 to 3 MeV”, Nucl. Sci. Tech. 30, 180.
  • Lüdecke, H., Wan-Tjin T., Werner H., Zimmerer J. (1968). “The reactions 6Li3He,3He0)6Li, 6Li(d, d0)6Li, 7Li(d, d0)7Li and 6Li(3He, d0,1)7Be”, Nucl. Phys. A 109, 676.
  • Malaney, R., Fowler, W. 1988. “Late-time neutron diffusion and nucleosynthesis in a post-QCD inhomogeneous Omega(b) = 1 universe”, Astrophys. J. 333, 14.
  • McCleskey, M., Mukhamedzhanov, A. M., Trache, L., Tribble, R. E., Banu, A., Eremenko, V., Goldberg, V. Z., Lui, Y.-W., McCleskey, E., Roeder, B. T., Spiridon, A., Carstoiu, F., Burjan, V., Hons, Z., Thompson, I. J. 2014. “Determination of The Asymptotic Normalization Coefficients For 14C + N↔15C, The 14C(N,γ)15C Reaction Rate, and Evaluation of A New Method To Determine Spectroscopic Factors”, Phys. Rev. C 89, 044605.
  • McNeel, D. G., Wuosmaa, A. H., Kuvin, S. A., Smith, J., Back, B. B., Chen, J., Hoffman, C. R., Kay, B. P., Wilson, G. L., Sharp, D. K., Clark, R. M., Crawford, H. L., Fallon, P., Macchiavelli, A. O. 2021. “Configuration mixing in 28Mg and the 26Mg(t,p)28Mg reaction”, Phys. Rev. C 103, 064320.
  • Moro, A. M., Crespo, R., Nunes, F. M., Thompson, I. J. 2002. “8B breakup in elastic and transfer reactions” Phys. Rev. C, 66, 024612.
  • Moro, A. M., Crespo, R., Nunes, F. M., Thompson, I. J. 2003. “Breakup and core coupling in 14N(7Be,8B)13C” Phys. Rev. C, 67, 047602.
  • Mosel, U., Zint, P. -G., Passler, K. H. 1974. “Self-consistent calculations for highly excited compound nuclei”, Nucl. Phys. A, 236, 252.
  • Möller, P., Nix, J. R. 1981. “Nuclear mass formula with a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential”, Nucl. Phys. A, 361, 117- 146.
  • Ngo, C., Tamain, B., Beiner, M., Lombard, R. J., Mas, D., Deubler, H. H. 1975. “Properties of heavy ion interaction potentials calculated in the energy density formalism”, Nucl. Phys. A, 252, 237.
  • Mukhamedzhanov, A. M., Burjan, V., Gulino, M., Hons, Z., Kroha, V., McCleskey, M., Mrázek, J., Nguyen, N., Nunes, F. M., Piskor, Š., Romano, S., Sergi, M. L., Spitaleri, C., Tribble, R. E. 2011. “Asymptotic normalization coefficients from the 14C(d,p)15C reaction”, Phys. Rev. C, 84, 024616.
  • Mutchler, G. S., Rendic, D., Velkley, D. E., Sweeney Jr., W. E., Phillips, G. C. (1971). “The (d, n) Reaction On 1p Shell Nuclei At Ed = 11.8 MeV”, Nucl. Phys. A, 172, 469-488.
  • Ngo, H., Ngo Ch. 1980. “Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation”, Nucl. Phys. A, 348, 140.
  • Nollett, K. M., Lemoine, M., Schramm, D. N. 1997. “Nuclear reaction rates and primordial 6Li”, Phys. Rev. C, 56, 1144.
  • Osman, A., Abdel-Aziz, S. S. 1990. “Dependence of the interaction potential and fusion cross- section on temperature”, Acta Phys. Hung., 67, 367-379.
  • Pearce, K. I., Clarke, N. M., Griffiths, R. J., Simmonds, P. J., Barker, D., England, J. B. A., Mannion, M. C., Ogilvie, C. A. 1987. “36 MeV triton inelastic scattering and one-nucleon transfer reactions”, Nucl. Phys. A 467, 215-239.
  • Perey, C. M., Perey, F. G. 1976. “Compilation of phenomenological optical-model parameters 1954–1975”, At. Data Nucl. Data Tables 17, 1-101.
  • Pieper, S. C., Varga, K., Wiringa, R. B. 2002. “Quantum Monte Carlo calculations of A=9,10 nuclei”, Phys. Rev. C 66, 044310.
  • Pulagam, K. R., Gómez-Vallejo, V., López-Gallego, F., Rejc, L., Llop, J. (2021). “Synthesis of 13N and 15O-Labeled Radiopharmaceuticals”, Handbook of Radiopharmaceuticals: Methodology and Applications, Second Edition, John Wiley & Sons Ltd.
  • Puri, R. K., Ohtsuka, N., Lehmann, E., Faessler, A., Matin, M. A., Khoa, Dao T., Batko, G., Huang, S. W. 1994. “Temperature-dependent mean field and its effect on heavy-ion reactions”, Nucl. Phys. A 575, 733-765.
  • Quentin, P., Flocard, H. 1978. “Self-consistent calculations of nuclear properties with phenomenological effective forces”, Ann. Rev. Nucl. Sci., 28, 523.
  • Rashdan, M., Faessler, A., Ismail, M., Ohtsuka, N. 1987. “The temperature dependence of the Hi optical potential”, Nucl. Phys. A 468, 168.
  • Reinhard, P.-G. 1989. “The relativistic mean-field description of nuclei and nuclear dynamics”, Rep. Prog. Phys., 52, 439-514.
  • Reinhard, P.-G., Rufa, M., Maruhn, J., Greiner, W., Friedrich, J. 1986. “Nuclear ground-state properties in a relativistic Meson-Field theory”, Z. Phys. A, 323, 13-25.
  • Reisdorf, W. 1994. “Heavy-ion reactions close to the Coulomb barrier”, J. Phys. G Nucl. Part. Phys., 20, 1297-1353.
  • Rolfs, C., Rodney, W. 1988. “Cauldrons in the Cosmos”, The University of Chicago Press, Chicago and London.
  • Rollinde, E., Vangioni-Flam, E., Olive, K. A. 2005. “Cosmological Cosmic Rays and the Observed 6Li Plateau in Metal-poor Halo Stars”, Astrophys. J., 627, 666.
  • Sagaidak, R. N., Tretyakova, S. P., Khlebnikov, S. V., Ogloblin, A. A., Rowley, N., Trzaska, W. H. 2007. “Nuclear potentials for sub-barrier fusion and cluster decay in 14C, 18O + 208Pb systems”, Phys. Rev. C, 76, 034605.
  • Sahu, S. K., Singh, Bhuyan, M., Biswal, S. K., Patra, S. K. 2014. “Importance of nonlinearity in the NN potential”, Phys. Rev. C, 89, 034614.
  • Satchler, G. R. 1964. “The distorted-waves theory of direct nuclear reactions with spin-orbit effects”, Nucl. Phys., 55, 1- 33.
  • Satchler, G. R., Love, W. G. 1979. “Folding model potentials from realistic interactions for heavy-ion scattering”, Phys. Rep., 55, 183.
  • Satchler, G. R. 1983. “Direct nuclear reactions, international series of monographs on physics”, Oxford University Press, Oxford.
  • Schechter, H., Canto, L. F. 1979. “Proximity formulae for folding potentials”, Nucl. Phys., 315, 470.
  • Seif, W. M., Mansour, H. 2015. “Systematics of nucleon density distributions and neutron skin of nuclei”, Int. J. Mod. Phys. E, 24, 1550083.
  • Serot, B.D., Walecka, J.D. 1986. “The relativistic nuclear many-body problem”, Adv. Nucl. Phys., 16, 1.
  • Shlomo, S., Natowitz, J. B. 1991. “Temperature and mass dependence of level density parameter”, Phys. Rev. C, 44, 2878.
  • Shirani, B., Abbasi, F., Nikbakht, M. (2013). “Production of 13N by 12C(d,n)13N reaction in a medium energy plasma focus”, Appl. Radiat. Isotopes 74, 86-90.
  • Singh, B., Bhuyan, M., Patra, S.K., Gupta, R. K. 2012. “Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon–nucleon interaction: applied to cluster radioactive decays”, J. Phys. G: Nucl. Part. Phys., 39, 025101.
  • Song, H. Y., Kim, Y. 2018. “Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models”, J. Korean Phys. Soc. 73, 1247–1254.
  • Spatafora, A. et al. (NUMEN Collaboration). 2023. “Multichannel experimental and theoretical approach to the 12C(18O,18F)12B single-charge-exchange reaction at 275 MeV: Initial-state interaction and single-particle properties of nuclear wave functions”, Phys. Rev. C, 107, 024605.
  • Terasawa, M., Sumiyoshi, K., Kajino, T., Mathews, G., Tanihata, I. 2001. “New Nuclear Reaction Flow during r-Process Nucleosynthesis in Supernovae: Critical Role of Light, Neutron-rich Nuclei”, Astrophys. J. 562, 470.
  • Timofeyuk, N. K., Descouvemont, P., Thompson, I. J. 2008. “Threshold effects in the 27P(3/2+)→26Si+p and 27Mg(3/2+)→26Mg+n mirror decays and the stellar reaction 26Si(p,γ)27P”, Phys. Rev. C 78, 044323.
  • Toki, H., Sugahara, Y., Hirata, D., Tanihata, I., Carlson, B. 1991. “Properties of nuclei far from the stability line in the relativistic hartree theory”, Nucl. Phys. A, 524, 633.
  • Trezzi, D., Anders, M., Aliotta, M., Bellini, A., Bemmerer, D., Boeltzig, A., Broggini, C., Bruno, C. G., Caciolli, A., Cavanna F. et al. 2017. “Big Bang 6Li nucleosynthesis studied deep underground (LUNA collaboration)”, Atrop. Phys. 89, 57.
  • Thompson, I.J. 1988. “Coupled reaction channels calculations in nuclear physics”, Computer Phys. Rep., 7, 167-212.
  • Thompson, I. J. “Getting started with FRESCO”, unpublished.
  • Walecka, J.D. 1974. “A theory of highly condensed matter”, Ann. Phys. (N.Y.), 83, 491.
  • Wiescher, M., Görres, J., Schatz, H. 1999. “Break-out reactions from the CNO cycles”, J. Phys. G: Nucl. Part. Phys. 25, R133.
  • Yang, J. 2019. “Study of one-neutron halo through (d,p) transfer reactions”, PhD Degree in Engineering Sciences and Technology (ULB - “Docteur en Sciences de l’ingénieur et technologie”) and in Science (KUL).
  • Yukawa, H. 1935. “On the interaction of elementary particles”, Proc. Phys. Math. Soc. Jpn., 17, 48.
  • Zagatto, V. A. B., Gómez-Ramos, M., Gasques, L. R., Moro, A. M., Chamon, L. C., Alvarez, M. A. G., Scarduelli, V., Fernández-Garcia, J. P., de Oliveira, J. R. B., Lépine-Szily, A., Arazi, A. 2022. “Elastic, inelastic, and one-neutron transfer angular distributions of 6Li + 120Sn at energies near the Coulomb barrier” Phys. Rev. C, 106, 014622.
  • Zwieglinski, B., Benenson, W., Robertson, R. G. H., Coker, W. R. 1979. “Study of the 10Be(d, p)11Be reaction at 25 MeV”, Nucl. Phys. A 315: 124-132.
APA AYGÜN M, AYGÜN Z, KARAALİ N (2023). Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. , 0 - 132. 122F275
Chicago AYGÜN Murat,AYGÜN ZEYNEP,KARAALİ NAZIM Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. (2023): 0 - 132. 122F275
MLA AYGÜN Murat,AYGÜN ZEYNEP,KARAALİ NAZIM Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. , 2023, ss.0 - 132. 122F275
AMA AYGÜN M,AYGÜN Z,KARAALİ N Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. . 2023; 0 - 132. 122F275
Vancouver AYGÜN M,AYGÜN Z,KARAALİ N Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. . 2023; 0 - 132. 122F275
IEEE AYGÜN M,AYGÜN Z,KARAALİ N "Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi." , ss.0 - 132, 2023. 122F275
ISNAD AYGÜN, Murat vd. "Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi". (2023), 0-132. https://doi.org/122F275
APA AYGÜN M, AYGÜN Z, KARAALİ N (2023). Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. , 0 - 132. 122F275
Chicago AYGÜN Murat,AYGÜN ZEYNEP,KARAALİ NAZIM Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. (2023): 0 - 132. 122F275
MLA AYGÜN Murat,AYGÜN ZEYNEP,KARAALİ NAZIM Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. , 2023, ss.0 - 132. 122F275
AMA AYGÜN M,AYGÜN Z,KARAALİ N Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. . 2023; 0 - 132. 122F275
Vancouver AYGÜN M,AYGÜN Z,KARAALİ N Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi. . 2023; 0 - 132. 122F275
IEEE AYGÜN M,AYGÜN Z,KARAALİ N "Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi." , ss.0 - 132, 2023. 122F275
ISNAD AYGÜN, Murat vd. "Transfer Reaksiyonlarının Sıcaklık, Yoğunluk Dağılımı, Nükleer Potansiyel ve Nükleon-Nükleon Etkileşimlerine Bağlı Olarak İncelenmesi". (2023), 0-132. https://doi.org/122F275