11 0

Proje Grubu: MFAG Sayfa Sayısı: 85 Proje No: 122F075 Proje Bitiş Tarihi: 15.06.2023 Metin Dili: Türkçe DOI: 122F075 İndeks Tarihi: 12-03-2024

Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı

Öz:
Nüfus artışıyla birlikte yoğunlaşan tarımsal ve endüstriyel faaliyetlerin sonucunda ortaya çıkan atıklar içme sularında ağır metallerin veya organik kirleticilerin artmasına neden olmaktadır. Her geçen gün temiz suya olan ihtiyacın artışı ve küresel ısınmanın su kıtlığını tetiklemesi sulardaki kirlenmenin giderimini son derece önemli hale getirmektedir. Bu bağlamda, tekstilden ilaç sanayine kadar geniş bir uygulama alanına sahip olan organik kirleticilerden olan sentetik boyaların atık sulardan temizlenmesi hayati önem arz etmektedir. Bu çalışma kapsamında sulardaki sentetik boya kirliliği problemine odaklanılmıştır. Bu amaca yönelik olarak, yeni bir katalizör olarak sunulan Ag@HfO2 çekirdek-kabuk nanoyapılarının yaygın endüstriyel sentetik kirleticiler arasında yer alan katyonik boyalardan Rodamin B (RhB), metilen mavisi (MB) ve direkt kırmızı-23 (DR-23) kirleticilerinin fotokatalitik bozunmasındaki performansları incelenmiştir. Sentezlenen yapıların X-ışınları kırınım difraktometresi (XRD), geçirmeli elektron mikroskopu (TEM) X-ışınları fotoelektron spektroskopisi, UV-Vis ve fotolüminesans spektroskopileri ile karakterizasyonu Ag@HfO2 çekirdek-kabuk nanoyapılarının başarılı bir şekilde sentezlendiğini ortaya konmuştur. Daha sonra sentezlenen Ag@HfO2 çekirdek-kabuk nanoyapılarının fotodegredasyon için uygunluğu test edilmiştir. Fotokatalitik ölçümler, ilgili boyaların hem UV bölgede hem de görünür bölgede yüksek verim ile giderebildiğini göstermiştir. Elde edilen sonuçlara dayalı olarak Ag@HfO2 çekirdek-kabuk nanoyapılarının çevre sağlığı bakımından oldukça önemli görülen bir problemin çözümüne katkı sağlayacağı söylenebilir.
Anahtar Kelime: Fotokataliz HfO2 nanoparçacıklar Ag nanoparçacıklar Ag@HfO2 çekirdek-kabuk nanoyapılar

Design of Ag@HfO2 Core-Shell Nanostructures with Efficient Sensitization Mechanism for Photocatalysis

Öz:
Waste generated by agricultural and industrial activities, which are intensifying as the population grows, cause an increase in heavy metals or organic pollutants in drinking water. With the demand for water increasing day by day and global warming threatening to make water scarce, the need to remove pollution from water is paramount. In this context, it is vital to remove synthetic dyes from wastewater, which are organic pollutants with a wide range of applications from textiles to pharmaceuticals. This study focuses on the problem of synthetic dyes in water. To this end, the performance of Ag@HfO2 core-shell nanostructures, presented as a new catalyst, was investigated in the photocatalytic degradation of the cationic dyes Rhodamine B (RhB), Methylene Blue (MB) and Direct Red 23 (DR-23), which are among the most common industrial synthetic pollutants. The synthesized structures were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, UV-Vis and photoluminescence spectroscopy, and it was revealed that Ag@HfO2 core-shell nanostructures were successfully synthesized. Then, the suitability of the synthesized Ag@HfO2 core-shell nanostructures for photo-degradation was found to be able to remove dyes related to photocatalytic measurements with high efficiency both in the UV region and the visible region. It is predicted that the results will contribute to the solution of a problem that is considered very important in terms of environmental health.
Anahtar Kelime: Fotokataliz HfO2 nanoparçacıklar Ag nanoparçacıklar Ag@HfO2 çekirdek-kabuk nanoyapılar

Erişim Türü: Bibliyografik
  • Agarwal, P., Kumar, V., Kachhwaha, S., & Kothari, S. (2014). Green Synthesis of Silver Nanoparticles Using Callus Extract of Capsicum annuum L. and Their Activity against Microorganisms. International Journal of Nanotechnology and Application (IJNA), 4(5), 1–8. http://www.tjprc.org/view_paper.php?id=4087
  • Angel, R. Del, Durán-Álvarez, J. C., & Zanella, R. (2018). TiO2-Low Band Gap Semiconductor Heterostructures for Water Treatment Using Sunlight-Driven Photocatalysis. In Titanium Dioxide - Material for a Sustainable Environment. InTech. https://doi.org/10.5772/intechopen.76501
  • Anonim. (2023). Fotokatalitik TiO2 Tozu Üretimi. Atılım University. https://www.atilim.edu.tr/shares/atilim/files/haberler/6_Jongee 2- TiO2 Atılım Poster.pdf
  • Anpo, M., Che, M., Fubini, B., Garrone, E., Giamello, E., & Paganini, M. C. (1999). Generation of superoxide ions at oxide surfaces. Topics in Catalysis, 8(3–4), 189–198. https://doi.org/10.1023/a:1019117328935
  • Baffou, G., & Quidant, R. (2014). Nanoplasmonics for chemistry. Chemical Society Reviews, 43(11), 3898–3907. https://doi.org/10.1039/c3cs60364d
  • Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4 ) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560–568. https://doi.org/10.1016/j.apsusc.2018.01.085
  • Bastús, N. G., Merkoçi, F., Piella, J., & Puntes, V. (2014). Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chemistry of Materials, 26(9), 2836–2846. https://doi.org/10.1021/cm500316k
  • Basu, M., Garg, N., & Ganguli, A. K. (2014). A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. Journal of Materials Chemistry A, 2(20), 7517–7525. https://doi.org/10.1039/c3ta15446g
  • Boskabadi, M. R., Rogé, V., Bazargan, A., Sargazi, H., & Barborini, E. (2022). An introduction to photocatalysis. In A. Bazargan (Ed.), Photocatalytic Water and Wastewater Treatment (1th ed., pp. 1–36). IWA Publishing. https://doi.org/10.2166/9781789061932_0001
  • Bratan, V., Vasile, A., Chesler, P., & Hornoiu, C. (2022). Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. In Catalysts (Vol. 12, Issue 10, p. 1134). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/catal12101134
  • Bräuer, G., & Kondruweit, S. (2009). Surface and coating technologies. In Technology Guide: Principles - Applications - Trends (pp. 42–47). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88546-7_9
  • Cao, S., Zhang, S., Zhang, T., Fisher, A., & Lee, J. Y. (2018). Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption. Journal of Materials Chemistry C, 6(15), 4007–4014. https://doi.org/10.1039/c8tc00185e
  • Chen, H., Xie, Y., Sun, X., Lv, M., Wu, F., Zhang, L., Li, L., & Xu, X. (2015). Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts. Dalton Transactions, 44(29), 13030–13039. https://doi.org/10.1039/c5dt01757b
  • Chen, T., Tong, F., Enderlein, J., & Zheng, Z. (2020). Plasmon-driven modulation of reaction pathways of individual pt-modified au nanorods. Nano Letters, 20(5), 3326–3330. https://doi.org/10.1021/acs.nanolett.0c00206
  • Cheynet, M. C., Pokrant, S., Tichelaar, F. D., & Rouvìre, J. L. (2007). Crystal structure and band gap determination of Hf O2 thin films. Journal of Applied Physics, 101(5). https://doi.org/10.1063/1.2697551
  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. In Water Research (Vol. 44, Issue 10, pp. 2997–3027). Pergamon. https://doi.org/10.1016/j.watres.2010.02.039
  • Chou, K. Sen, Huang, K. C., & Lee, H. H. (2005). Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology, 16(6), 779–784. https://doi.org/10.1088/0957-4484/16/6/027
  • Cybulski, A., Moulijn, J. A., & Stankiewicz, A. (2010). Novel Concepts in Catalysis and Chemical Reactors: Improving the Efficiency for the Future. In Novel Concepts in Catalysis and Chemical Reactors: Improving the Efficiency for the Future. Wiley-VCH. https://doi.org/10.1002/9783527630882
  • David, L., & Moldovan, B. (2020). Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials, 10(2), 202. https://doi.org/10.3390/nano10020202
  • Deng, Y., Cai, Y., Sun, Z., Liu, J., Liu, C., Wei, J., Li, W., Liu, C., Wang, Y., & Zhao, D. (2010). Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. Journal of the American Chemical Society, 132(24), 8466– 8473. https://doi.org/10.1021/ja1025744
  • Dhoke, S. K. (2023). Synthesis of nano-ZnO by chemical method and its characterization. Results in Chemistry, 5, 100771. https://doi.org/10.1016/j.rechem.2023.100771
  • El-Toni, A. M., Habila, M. A., Ibrahim, M. A., Labis, J. P., & ALOthman, Z. A. (2014). Simple and facile synthesis of amino functionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chemical Engineering Journal, 251, 441–451. https://doi.org/10.1016/j.cej.2014.04.072
  • El-Toni, A. M., Habila, M. A., Labis, J. P., Alothman, Z. A., Alhoshan, M., Elzatahry, A. A., & Zhang, F. (2016). Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale, 8(5), 2510–2531. https://doi.org/10.1039/C5NR07004J
  • Enesca, A., & Andronic, L. (2020). The influence of photoactive heterostructures on the photocatalytic removal of dyes and pharmaceutical active compounds: A mini-review. In Nanomaterials (Vol. 10, Issue 9, pp. 1–22). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/nano10091766
  • Ertl, G., Knözinger, H., & Weitkamp, J. (2008). Handbook of Heterogeneous Catalysis. In Gerhard Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (Vols. 1–5). Wiley. https://doi.org/10.1524/zpch.1999.208.part_1_2.274
  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30(7), 953–971. https://doi.org/10.1016/J.ENVINT.2004.02.001
  • Ghosh Chaudhuri, R., & Paria, S. (2012). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. In Chemical Reviews (Vol. 112, Issue 4, pp. 2373–2433). American Chemical Society. https://doi.org/10.1021/cr100449n
  • González, L. A., Gálvez-Barboza, S., Vento-Lujano, E., Rodríguez-Galicia, J. L., & García-Cerda, L. A. (2020). Mn-modified HfO2 nanoparticles with enhanced photocatalytic activity.
  • Ceramics International, 46(9), 13466–13473. https://doi.org/10.1016/j.ceramint.2020.02.130 Guan, B., Siampour, H., Fan, Z., Wang, S., Kong, X. Y., Mesli, A., Zhang, J., & Dan, Y. (2015). Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers. Scientific Reports, 5(1), 1–9. https://doi.org/10.1038/srep12641
  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling - An overview. RSC Advances, 2(16), 6380–6388. https://doi.org/10.1039/c2ra20340e
  • Hanefeld, U., & Lefferts, L. (2017). Catalysis : an integrated textbook for students (U. Hanefeld & L. Lefferts (eds.)). Wiley-VCH. https://www.wiley.com/en- nz/Catalysis%3A+An+Integrated+Textbook+for+Students-p-9783527341597
  • Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. In Journal of Environmental Management (Vol. 258, p. 110050). Academic Press. https://doi.org/10.1016/j.jenvman.2019.110050
  • Hoener, C. F., Allan, K. A., Bard, A. J., Campion, A., Fox, M. A., Mallouk, T. E., Webber, S. E., & White, J. M. (1992). Demonstration of a shell-core structure in layered CdSe-ZnSe small particles by x-ray photoelectron and Auger spectroscopies. Journal of Physical Chemistry, 96(9), 3812–3817. https://doi.org/10.1021/j100188a045
  • Hoflijk, I., Zborowski, C., Vaesen, I., Vanleenhove, A., Artyushkova, K., & Conard, T. (2022). High- energy x-ray photoelectron spectroscopy spectra of Al2O3 measured by Cr Kα. Surface Science Spectra, 29(1), 014021. https://doi.org/10.1116/6.0001577
  • Hu, J., Chen, M., Fang, X., & Wu, L. (2011). Fabrication and application of inorganic hollow spheres. Chemical Society Reviews, 40(11), 5472–5491. https://doi.org/10.1039/c1cs15103g
  • Ishchenko, O. M., Lamblin, G., Guillot, J., Infante, I. C., Guennou, M., Adjeroud, N., Fechete, I., Garin, F., Turek, P., & Lenoble, D. (2020). Mesoporous TiO2anatase films for enhanced photocatalytic activity under UV and visible light. RSC Advances, 10(63), 38233–38243. https://doi.org/10.1039/d0ra06455f
  • Jayaraman, V., Mahalingam, S., Chinnathambi, S., Pandian, G. N., Prakasarao, A., Ganesan, S., Ramasamy, J., Ayyaru, S., & Ahn, Y. H. (2022). Facile Synthesis of Hafnium Oxide Nanoparticle Decorated on Graphene Nanosheet and Its Photocatalytic Degradation of Organic Pollutants under UV-Light Irradiation. Applied Sciences (Switzerland), 12(21), 11222. https://doi.org/10.3390/app122111222
  • Jegannathan, K. R., & Nielsen, P. H. (2013). Environmental assessment of enzyme use in industrial production-a literature review. In Journal of Cleaner Production (Vol. 42, pp. 228– 240). Elsevier. https://doi.org/10.1016/j.jclepro.2012.11.005
  • Jiang, H., & Meng, X. (2022). Photocatalytic Oxygen Reduction. In Photo and Electro Catalytic Processes (pp. 389–413). Wiley. https://doi.org/10.1002/9783527830084.ch12
  • Jo, W. K., Lee, J. Y., & Natarajan, T. S. (2015). Fabrication of hierarchically structured novel redox- mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency. Physical Chemistry Chemical Physics, 18(2), 1000–1016. https://doi.org/10.1039/c5cp06176h
  • Jun, Y. W., Choi, J. S., & Cheon, J. (2007). Heterostructured magnetic nanoparticles: Their versatility and high performance capabilities. In Chemical Communications (Issue 12, pp. 1203–1214). The Royal Society of Chemistry. https://doi.org/10.1039/b614735f
  • Kayed, K. (2021). The luminescence properties of individual silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films. Journal of Luminescence, 237, 118163. https://doi.org/10.1016/J.JLUMIN.2021.118163
  • Kim, J., Kim, H. S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I. C., Moon, W. K., & Hyeon, T. (2008). Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie - International Edition, 47(44), 8438–8441. https://doi.org/10.1002/anie.200802469
  • Kisch, H. (2015). Semiconductor Photocatalysis: Principles and Applications. In Semiconductor Photocatalysis: Principles and Applications (Vol. 9783527335). https://doi.org/10.1002/9783527673315
  • Knözinger, H., & Kochloefl, K. (2003). Heterogeneous Catalysis and Solid Catalysts. In Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/14356007.a05_313
  • Kondaiah, P., Shaik, H., & Mohan Rao, G. (2015). Studies on RF magnetron sputtered HfO2 thin films for microelectronic applications. Electronic Materials Letters, 11(4), 592–600. https://doi.org/10.1007/s13391-015-4490-6
  • Koswatta, S. O., Koester, S. J., & Haensch, W. (2010). On the possibility of obtaining MOSFET- like performance and Sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Transactions on Electron Devices, 57(12), 3222–3230. https://doi.org/10.1109/TED.2010.2079250
  • Kumar, N., George, B. P. A., Abrahamse, H., Parashar, V., Ray, S. S., & Ngila, J. C. (2017). A novel approach to low-temperature synthesis of cubic HfO2 nanostructures and their cytotoxicity. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-07753-0
  • Kumar, R., Vij, A., & Singh, M. (2021). Defects assisted luminescence in m-HfO2 nanocrystals: An experimental and theoretical study. Optik, 248, 168121. https://doi.org/10.1016/j.ijleo.2021.168121
  • Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. Journal of Physical Chemistry A, 115(46), 13211–13241. https://doi.org/10.1021/jp204364a
  • Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B. K., & Malhotra, B. D. (2016). Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sensors and Actuators, B: Chemical, 235, 1–10. https://doi.org/10.1016/j.snb.2016.05.047
  • Lavand, A. B., & Malghe, Y. S. (2018). Synthesis, characterization and visible light photocatalytic activity of carbon and iron modified ZnO. Journal of King Saud University - Science, 30(1), 65–74. https://doi.org/10.1016/j.jksus.2016.08.009
  • Lee, J. S., Noh, K. J., Moon, S. C., Lee, Y. C., & Lee, S. E. (2017). Synthesis of flake type micro hollow silica using Mg(OH)2 inorganic template. Journal of the Korean Ceramic Society, 54(3), 222–227. https://doi.org/10.4191/kcers.2017.54.3.07
  • Li, D., Shi, F., Jiang, D., Chen, M., & Shi, W. (2017). CdIn2S4/g-C3N4 heterojunction photocatalysts: enhanced photocatalytic performance and charge transfer mechanism. RSC Advances, 7(1), 231–237. https://doi.org/10.1039/c6ra24809h
  • Li, Y. (2017). Plasmonic Optics: Theory and Applications. In Plasmonic Optics: Theory and Applications. SPIE. https://doi.org/10.1117/3.2263757
  • Lim, J., Um, J. H., Ahn, J., Yu, S. H., Sung, Y. E., & Lee, J. K. (2015). Soft Template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications. Chemistry - A European Journal, 21(21), 7954–7961. https://doi.org/10.1002/chem.201406667
  • Lin, H., & Zhao, L. (2019). Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production. Journal of Materials Science: Materials in Electronics, 30(19), 18191–18199. https://doi.org/10.1007/s10854-019-02173-4
  • Liu, Jian, Qiao, S. Z., Budi Hartono, S., & Lu, G. Q. M. (2010). Inside Cover: Monodisperse Yolk- Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors (Angew. Chem. Int. Ed. 29/2010). Angewandte Chemie International Edition, 49(29), 4840–4840. https://doi.org/10.1002/anie.201002660
  • Liu, Jian, Qiao, S. Z., Chen, J. S., Lou, X. W., Xing, X., & Lu, G. Q. (2011). Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 47(47), 12578–12591. https://doi.org/10.1039/c1cc13658e
  • Liu, Jun, Liu, F., Gao, K., Wu, J., & Xue, D. (2009). Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 19(34), 6073–6084. https://doi.org/10.1039/b900116f
  • Liu, M., Li, H., & Zeng, Y. (2015). Facile preparation of efficient WO3 photocatalysts based on surface modification. Journal of Nanomaterials, 2015, 1–7. https://doi.org/10.1155/2015/502514
  • Liu, Y., Zeng, X., Easton, C. D., Li, Q., Xia, Y., Yin, Y., Hu, X., Hu, J., Xia, D., McCarthy, D. T., Deletic, A., Sun, C., Yu, J., & Zhang, X. (2020). An: In situ assembled WO3-TiO2 vertical heterojunction for enhanced Z-scheme photocatalytic activity. Nanoscale, 12(16), 8775– 8784. https://doi.org/10.1039/d0nr01611j
  • Lou, X. W., Archer, L. A., & Yang, Z. (2008). Hollow micro-/nanostructures: Synthesis and applications. In Advanced Materials (Vol. 20, Issue 21, pp. 3987–4019). John Wiley & Sons, Ltd. https://doi.org/10.1002/adma.200800854
  • Low, J., Jiang, C., Cheng, B., Wageh, S., Al-Ghamdi, A. A., & Yu, J. (2017). A Review of Direct Z- Scheme Photocatalysts. Small Methods, 1(5), 1700080. https://doi.org/10.1002/SMTD.201700080
  • Lu, J., Zhang, T., Ma, J., & Chen, Z. (2009). Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials, 162(1), 140–145. https://doi.org/10.1016/j.jhazmat.2008.05.058
  • Luo, X., Li, Y., Yang, H., Liang, Y., He, K., Sun, W., Lin, H. H., Yao, S., Lu, X., Wan, L., & Feng, Z. (2018). Investigation of HfO2 thin films on Si by X-ray photoelectron spectroscopy, rutherford backscattering, grazing incidence X-ray diffraction and Variable Angle Spectroscopic Ellipsometry. Crystals, 8(6), 248. https://doi.org/10.3390/cryst8060248
  • Ma, C. M., Hong, G. B., & Lee, S. C. (2020). Facile synthesis of tin dioxide nanoparticles for photocatalytic degradation of Congo red dye in aqueous solution. Catalysts, 10(7), 1–17. https://doi.org/10.3390/catal10070792
  • Ma, M., Chen, H., Chen, Y., Wang, X., Chen, F., Cui, X., & Shi, J. (2012). Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials, 33(3), 989–998. https://doi.org/10.1016/j.biomaterials.2011.10.017
  • Manrique-Bedoya, S., Abdul-Moqueet, M., Lopez, P., Gray, T., Disiena, M., Locker, A., Kwee, S., Tang, L., Hood, R. L., Feng, Y., Large, N., & Mayer, K. M. (2020). Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Arrays. Journal of Physical Chemistry C, 124(31), 17172–17182. https://doi.org/10.1021/acs.jpcc.0c02443
  • Mazumder, V., Chi, M., More, K. L., & Sun, S. (2010). Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angewandte Chemie - International Edition, 49(49), 9368–9372. https://doi.org/10.1002/anie.201003903
  • Meng, Y. (2015a). A sustainable approach to fabricating ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials, 5(2), 1124–1135. https://doi.org/10.3390/nano5021124
  • Meng, Y. (2015b). A sustainable approach to fabricating ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials, 5(2), 1124–1135. https://doi.org/10.3390/nano5021124
  • Mishra, M., & Chun, D. M. (2015). α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General, 498, 126–141. https://doi.org/10.1016/j.apcata.2015.03.023
  • Mohammad-Beigi, H., Yaghmaei, S., Roostaazad, R., & Arpanaei, A. (2013). Comparison of different strategies for the assembly of gold colloids onto Fe3O4@SiO2 nanocomposite particles. Physica E: Low-Dimensional Systems and Nanostructures, 49, 30–38. https://doi.org/10.1016/j.physe.2013.01.004
  • Mokashi, V. V., Gore, A. H., Sudarsan, V., Rath, M. C., Han, S. H., Patil, S. R., & Kolekar, G. B. (2012). Evaluation of interparticle interaction between colloidal Ag nanoparticles coated with trisodium citrate and safranine by using FRET: Spectroscopic and mechanistic approach. Journal of Photochemistry and Photobiology B: Biology, 113, 63–69. https://doi.org/10.1016/j.jphotobiol.2012.05.006
  • Munthala, D., Mangababu, A., Nageswara Rao, S. V. S., Pojprapai, S., Pathak, A. P., & Avasthi, D. K. (2021). Swift heavy ion assisted growth of silver nanoparticles embedded in hafnium oxide matrix. Journal of Applied Physics, 130(4). https://doi.org/10.1063/5.0054846
  • Nakata, K., & Fujishima, A. (2012). TiO 2 photocatalysis: Design and applications. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews (Vol. 13, Issue 3, pp. 169– 189). Elsevier. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  • Nasir, J. A., Rehman, Z. U., Shah, S. N. A., Khan, A., Butler, I. S., & Catlow, C. R. A. (2020). Recent developments and perspectives in CdS-based photocatalysts for water splitting. Journal of Materials Chemistry A, 8(40), 20752–20780. https://doi.org/10.1039/d0ta05834c
  • Ng, B. J., Putri, L. K., Kong, X. Y., Teh, Y. W., Pasbakhsh, P., & Chai, S. P. (2020). Z-Scheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 7(7), 1903171. https://doi.org/10.1002/advs.201903171
  • Ng, B. J., Putri, L. K., Tan, L. L., Pasbakhsh, P., & Chai, S. P. (2017). All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chemical Engineering Journal, 316, 41–49. https://doi.org/10.1016/j.cej.2017.01.054
  • Ni, J., Zhou, Q., Li, Z., & Zhang, Z. (2008). Oxygen defect induced photoluminescence of Hf O2 thin films. Applied Physics Letters, 93(1). https://doi.org/10.1063/1.2952288 Nosaka, Y., & Nosaka, A. Y. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161
  • Osaki, J., Yoda, M., Takashima, T., & Irie, H. (2019). Selective loading of platinum or silver cocatalyst onto a hydrogen-evolution photocatalyst in a silver-mediated all solid-state Z- scheme system for enhanced overall water splitting. RSC Advances, 9(71), 41913–41917. https://doi.org/10.1039/c9ra09421k
  • Padmanabhan, P. V. A., Sreekumar, K. P., Thiyagarajan, T. K., Satpute, R. U., Bhanumurthy, K., Sengupta, P., Dey, G. K., & Warrier, K. G. K. (2006). Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, 80(11–12), 1252–1255. https://doi.org/10.1016/j.vacuum.2006.01.054
  • Pan, Z., Zhang, G., & Wang, X. (2019). Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe2O3: All Solid State Z Scheme System for Photocatalytic Overall Water Splitting. Angewandte Chemie, 131(21), 7176–7180. https://doi.org/10.1002/ange.201902634
  • Parang, Z., Keshavarz, A., Farahi, S., Elahi, S. M., Ghoranneviss, M., & Parhoodeh, S. (2012). Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Scientia Iranica, 19(3), 943–947. https://doi.org/10.1016/j.scient.2012.02.026
  • Paul, D. R., Gautam, S., Panchal, P., Nehra, S. P., Choudhary, P., & Sharma, A. (2020). ZnO- Modified g-C3N4: A Potential Photocatalyst for Environmental Application. ACS Omega, 5(8), 3828–3838. https://doi.org/10.1021/acsomega.9b02688
  • Pawar, O., Deshpande, N., Dagade, S., Waghmode, S., & Nigam Joshi, P. (2016). Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima. Journal of Experimental Nanoscience, 11(1), 28–37. https://doi.org/10.1080/17458080.2015.1025300
  • Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. In Applied Catalysis B: Environmental (Vol. 125, pp. 331–349). Elsevier. https://doi.org/10.1016/j.apcatb.2012.05.036
  • Pol, V. G., Srivastava, D. N., Palchik, O., Palchik, V., Slifkin, M. A., Weiss, A. M., & Gedanken, A. (2002). Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir, 18(8), 3352–3357. https://doi.org/10.1021/LA0155552/ASSET/IMAGES/MEDIUM/LA0155552E00004.GIF
  • Qiu, J., & Wei, W. D. (2014). Surface plasmon-mediated photothermal chemistry. Journal of Physical Chemistry C, 118(36), 20735–20749. https://doi.org/10.1021/jp5042553
  • Rajbongshi, H., Bhattacharjee, S., & Datta, P. (2017). Photocatalytic activity of Ag/ZnO core-shell nanoparticles with shell thickness as controlling parameter under green environment. Materials Research Express, 4(2), 025501. https://doi.org/10.1088/2053-1591/aa5cd3
  • Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171–192. https://doi.org/10.1016/j.jphotochemrev.2008.09.001
  • Ramadoss, A., & Kim, S. J. (2012). Synthesis and characterization of HfO2 nanoparticles by sonochemical approach. In Journal of Alloys and Compounds (Vol. 544, pp. 115–119). Elsevier. https://doi.org/10.1016/j.jallcom.2012.08.005
  • Ramadoss, A., Krishnamoorthy, K., & Kim, S. J. (2012). Novel synthesis of hafnium oxide nanoparticles by precipitation method and its characterization. Materials Research Bulletin, 47(9), 2680–2684. https://doi.org/10.1016/j.materresbull.2012.05.051
  • Ramzan, M., Rana, A. M., Ahmed, E., Wasiq, M. F., Bhatti, A. S., Hafeez, M., Ali, A., & Nadeem, M. Y. (2015). Optical characterization of hafnium oxide thin films for heat mirrors. Materials Science in Semiconductor Processing, 32, 22–30. https://doi.org/10.1016/j.mssp.2014.12.079
  • Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. In Chemical Engineering Journal (Vol. 151, Issues 1–3, pp. 10–18). Elsevier. https://doi.org/10.1016/j.cej.2009.02.026
  • Reginato, G., Zani, L., Calamante, M., Mordini, A., & Dessì, A. (2020). Dye-Sensitized Heterogeneous Photocatalysts for Green Redox Reactions. European Journal of Inorganic Chemistry, 2020(11–12), 899–917. https://doi.org/10.1002/ejic.201901174
  • Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 170(2–3), 560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064
  • Rodrigues, J., Hatami, T., Rosa, J. M., Tambourgi, E. B., & Mei, L. H. I. (2020). Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chemical Engineering Research and Design, 153, 294–305. https://doi.org/10.1016/j.cherd.2019.10.021
  • Rogé, V., Didierjean, J., Crêpellière, J., Arl, D., Michel, M., Fechete, I., Dinia, A., & Lenoble, D. (2020). Tuneable functionalization of glass fibre membranes with ZNO/SNO2 heterostructures for photocatalytic water treatment: Effect of SNO2 coverage rate on the photocatalytic degradation of organics. Catalysts, 10(7), 1–18. https://doi.org/10.3390/catal10070733
  • Sabzi, M., & Mersagh Dezfuli, S. (2018). A study on the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc- silver oxide batteries . International Journal of Applied Ceramic Technology, 15(6), 1446– 1458. https://doi.org/10.1111/ijac.13047
  • Sari, F. N. I., Lu, S. H., & Ting, J. M. (2020). Wide-bandgap HfO2-V2O5 nanowires heterostructure for visible light-driven photocatalytic degradation. Journal of the American Ceramic Society, 103(3), 2252–2261. https://doi.org/10.1111/jace.16870
  • Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109– 136. https://doi.org/10.1146/annurev-environ-100809-125342
  • Sebti, Y., Chauveau, T., Chalal, M., Lalatonne, Y., Lefebvre, C., & Motte, L. (2022). Assessment of the Morphological, Optical, and Photoluminescence Properties of HfO2Nanoparticles Synthesized by a Sol-Gel Method Assisted by Microwave Irradiation. Inorganic Chemistry, 61(17), 6508–6518. https://doi.org/10.1021/acs.inorgchem.2c00277
  • Serpone, N., & Emeline, A. V. (2002). Suggested terms and definitions in photocatalysis and radiocatalysis. International Journal of Photoenergy, 4(3), 93–131. https://doi.org/10.1155/s1110662x02000144
  • Shi, J., Ravi, A., Richey, N. E., Gong, H., & Bent, S. F. (2022). Molecular Layer Deposition of a Hafnium-Based Hybrid Thin Film as an Electron Beam Resist. ACS Applied Materials and Interfaces, 14(23), 27140–27148. https://doi.org/10.1021/acsami.2c04092
  • Srdic, V., Mojic, B., Nikolic, M., & Ognjanovic, S. (2013). Recent progress on synthesis of ceramics core/shell nanostructures. Processing and Application of Ceramics, 7(2), 45–62. https://doi.org/10.2298/pac1302045s
  • Sun, C., Li, T., Wen, W., Luo, X., & Zhao, L. (2020). ZnSe/CdSe core-shell nanoribbon arrays for photocatalytic applications. CrystEngComm, 22(5), 895–904. https://doi.org/10.1039/c9ce01583c
  • Tiwari, S. P., Kumar, A., Kumar, K., Singh, M. R., Bharti, G. P., Khare, A., Swart, H. C., & Verma, S. K. (2020). LSPR-mediated improved upconversion emission on randomly distributed gold nanoparticles array. New Journal of Chemistry, 44(45), 19672–19682. https://doi.org/10.1039/c9nj06471k
  • Tu, W., Zhou, Y., & Zou, Z. (2013). Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 23(40), 4996–5008. https://doi.org/10.1002/adfm.201203547
  • Uddin, M. T., Hoque, M. E., & Chandra Bhoumick, M. (2020). Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Advances, 10(40), 23554–23565. https://doi.org/10.1039/d0ra03233f
  • Vallejo, W., Cantillo, A., & Díaz-Uribe, C. (2020). Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. International Journal of Photoenergy, 2020. https://doi.org/10.1155/2020/1627498
  • Van Santen, R. A. (2017). Modern heterogeneous catalysis: An introduction. In Modern Heterogeneous Catalysis: An Introduction. wiley. https://doi.org/10.1002/9783527810253
  • Wan, Y., & Zhou, X. (2017). Formation mechanism of hafnium oxide nanoparticles by a hydrothermal route. RSC Advances, 7(13), 7763–7773. https://doi.org/10.1039/c6ra26663k Wang, G., Geng, L., Tang, W., Wang, B., Zhao, W., Zhang, W., Yuan, B., Yuan, H., & Zhou, T. (2020). Two dimensional CdS/ZnO type-II heterostructure used for photocatalytic water- splitting. Nanotechnology, 31(48), 485701. https://doi.org/10.1088/1361-6528/abb15a
  • Wang, H. C., Hong, Y., Chen, Z., Lao, C., Lu, Y., Yang, Z., Zhu, Y., & Liu, X. (2020). ZnO UV Photodetectors Modified by Ag Nanoparticles Using All-Inkjet-Printing. Nanoscale Research Letters, 15(1), 1–8. https://doi.org/10.1186/s11671-020-03405-x
  • Wang, L., Li, J., Wang, Y., Yu, K., Tang, X., Zhang, Y., Wang, S., & Wei, C. (2016). Construction of 1D SnO 2 -coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep35079
  • Wang, Sake, Tian, H., Ren, C., Yu, J., & Sun, M. (2018). Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Scientific Reports, 8(1), 1–6. https://doi.org/10.1038/s41598-018-30614-3
  • Wang, Sheng, Zhu, B., Liu, M., Zhang, L., Yu, J., & Zhou, M. (2019). Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 243, 19–26. https://doi.org/10.1016/j.apcatb.2018.10.019
  • Wang, X., Wang, Y., Yang, X., & Cao, Y. (2019). Numerical simulation on the LSPR-effective core- shell copper/graphene nanofluids. Solar Energy, 181, 439–451. https://doi.org/10.1016/j.solener.2019.02.018
  • Wang, Y., Chen, C., Tian, W., Xu, W., & Li, L. (2019). Designing WO3/CdIn2S4 type-II heterojunction with both efficient light absorption and charge separation for enhanced photoelectrochemical water splitting. Nanotechnology, 30(49). https://doi.org/10.1088/1361- 6528/ab4084
  • Yang, H., & Cheng, H. (2007). Controlling nitrite level in drinking water by chlorination and chloramination. Separation and Purification Technology, 56(3), 392–396. https://doi.org/10.1016/j.seppur.2007.05.036
  • Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Huerta- Flores, A. M., & Subhan, F. (2020). Visible light-excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of ZnO semiconductor for pollutants degradation. Journal of the Chinese Chemical Society, 67(9), 1611–1617. https://doi.org/10.1002/jccs.202000205
  • Zhang, A., Zhang, J., & Fang, Y. (2008). Photoluminescence from colloidal silver nanoparticles. Journal of Luminescence, 128(10), 1635–1640. https://doi.org/10.1016/j.jlumin.2008.03.014
  • Zhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. In Nano Today (Vol. 5, Issue 2, pp. 128–142). Elsevier. https://doi.org/10.1016/j.nantod.2010.03.002
  • Zhang, W., Wang, Y., Sun, X., Wang, W., & Chen, L. (2014). Mesoporous titania based yolk–shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo- photothermal treatment. Nanoscale, 6(23), 14514–14522. https://doi.org/10.1039/C4NR04864D
  • Zhang, X. F., Mansouri, S., Clime, L., Ly, H. Q., Yahia, L. H., & Veres, T. (2012). Fe 3O 4-silica core-shell nanoporous particles for high-capacity pH-triggered drug delivery. Journal of Materials Chemistry, 22(29), 14450–14457. https://doi.org/10.1039/c2jm31749d
  • Zhao, W., Gu, J., Zhang, L., Chen, H., & Shi, J. (2005). Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Journal of the American Chemical Society, 127(25), 8916–8917. https://doi.org/10.1021/ja051113r
  • Zhen, Y., Yang, C., Shen, H., Xue, W., Gu, C., Feng, J., Zhang, Y., Fu, F., & Liang, Y. (2020). Photocatalytic performance and mechanism insights of a S-scheme g- C3N4/Bi2MoO6heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Physical Chemistry Chemical Physics, 22(45), 26278–26288. https://doi.org/10.1039/d0cp02199g
  • Zhou, H. S., Sasahara, H., Honma, I., Komiyama, H., & Haus, J. W. (1994). Coated Semiconductor Nanoparticles: The CdS/PbS System’s Photoluminescence Properties. Chemistry of Materials, 6(9), 1534–1541. https://doi.org/10.1021/cm00045a010
  • Zhou, H., Wang, C., Lai, Y., Yu, J., & Cheng, S. (2021). Plasmon-enhanced upconversion luminescence of the composite films through tunable ZnO spacer. Applied Physics A: Materials Science and Processing, 127(5), 1–6. https://doi.org/10.1007/s00339-021-04462-
  • Zhou, N., Liang, R., & Hu, A. (2014). Nanotechnology for Water Treatment and Purification (A. Hu & A. Apblett (eds.); Vol. 22). Springer International Publishing. https://doi.org/10.1007/978-3- 319-06578-6
  • Zhu, Y., Fang, Y., & Kaskel, S. (2010). Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery. Journal of Physical Chemistry C, 114(39), 16382–16388. https://doi.org/10.1021/JP106685Q/SUPPL_FILE/JP106685Q_SI_001.PDF
APA Yilmaz M, aydogan s, CANPOLAT N, A, Erdoğan E (2023). Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. , 0 - 85. 122F075
Chicago Yilmaz Mehmet,aydogan sakir,CANPOLAT NURTAÇ, Adem,Erdoğan Erman Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. (2023): 0 - 85. 122F075
MLA Yilmaz Mehmet,aydogan sakir,CANPOLAT NURTAÇ, Adem,Erdoğan Erman Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. , 2023, ss.0 - 85. 122F075
AMA Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. . 2023; 0 - 85. 122F075
Vancouver Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. . 2023; 0 - 85. 122F075
IEEE Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E "Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı." , ss.0 - 85, 2023. 122F075
ISNAD Yilmaz, Mehmet vd. "Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı". (2023), 0-85. https://doi.org/122F075
APA Yilmaz M, aydogan s, CANPOLAT N, A, Erdoğan E (2023). Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. , 0 - 85. 122F075
Chicago Yilmaz Mehmet,aydogan sakir,CANPOLAT NURTAÇ, Adem,Erdoğan Erman Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. (2023): 0 - 85. 122F075
MLA Yilmaz Mehmet,aydogan sakir,CANPOLAT NURTAÇ, Adem,Erdoğan Erman Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. , 2023, ss.0 - 85. 122F075
AMA Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. . 2023; 0 - 85. 122F075
Vancouver Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı. . 2023; 0 - 85. 122F075
IEEE Yilmaz M,aydogan s,CANPOLAT N, A,Erdoğan E "Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı." , ss.0 - 85, 2023. 122F075
ISNAD Yilmaz, Mehmet vd. "Foto-Kataliz İçin Verimli Duyarlılaştırma Mekanizmasına Sahip Ag@HfO2 Çekirdek-Kabuk Nanoyapıların Tasarımı". (2023), 0-85. https://doi.org/122F075