Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi

6 0

Proje Grubu: MFAG Sayfa Sayısı: 58 Proje No: 119F017 Proje Bitiş Tarihi: 01.03.2023 Metin Dili: Türkçe DOI: 119F017 İndeks Tarihi: 14-03-2024

Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi

Öz:
Biyokimyasal olayları temsil eden modellerin özellikleri, uygulamalarda ilgi çekici olmaya devam eden karmaşık kararlı durumlar ve sayısız durum geçişleri sergiler. Çatallanma teorisi ve hesaplamalı cebirin etkili yöntemlerini birleştirerek bu durumları incelemek, yakınında modelin niteliksel davranışının değiştiği çatallanma noktalarını ve belirli davranışı teşvik eden parametre aralıklarını elde etmek için son derece önemlidir. Bu proje, bazı biyokimyasal reaksiyon modellerinin daha önce tespit edilmemiş birkaç temel özelliğini ortaya koyan hesaplamalı cebirsel bir yaklaşım sunmaktadır. Bu yaklaşım sayesinde, önce, Lyapunov fonksiyonunu kullanarak, Brusselator modeli için Hopf çatallanmasını incelemek için ilk Lyapunov katsayısının genel formunu hesaplamaktayız. Daha sonra, en küçük üç boyutlu biyokimyasal reaksiyon modelindeki Hopf çatallanmasını incelemek için üçüncü dereceye kadar bir merkez manifold elde etmekteyiz. Bu iki model için elde ettiğimiz sonuçları sayısal benzetim ile görsel olarak sunmaktayız. Önde gelen metabolik yollardan biri olan glikoliz, bu temel süreci tanımlayan biyokimyasal modellerin pozitif kararlı durumlarında ortaya çıkan birçok farklı periyodik salınımı içermektedir. Ara ürünlerin moleküler difüzyonunu kullanan modellerden biri, sürekli salınımları açıklayabilmek için Higgins biyokimyasal modelidir. Projemizde, minimal Higgins modeli için hesaplamalı cebir yardımıyla model parametrelerinin genel değerleri için merkez odak problemini çalışmaktayız. İlk Lyapunov sayısının genel bir formunu bularak modelin her zaman kararlı bir odak noktasına sahip olduğunu göstermekteyiz. Daha sonra, model parametrelerinden ikisini değiştirerek, modelin kararlı odak noktası için periyot fonksiyonunun ilk üç katsayısını elde etmek için bir yaklaşım sunmaktayız. Bu sayede, tekil noktanın aslında [1,2] tipinde ikili-zayıf monodromik bir denge noktası olduğunu kanıtlamaktayız. Ek olarak, seçilen bir parametre için bir kritik periyodun küçük pertürbasyonlardan sonra bu tekil noktadan çatallanması için iki (küçük) aralık olduğunu göstermekteyiz. Son olarak, elde ettiğimiz tüm bulguları sayısal benzetimler ile görselleştirmekteyiz.
Anahtar Kelime: Limit çevrimi kararlılık biyokimyasal modeller kritik periyotlar çatallanmalar

Dynamical analysis of biochemical systems using the methods of computational algebra

Öz:
The characteristics of models representing biochemical phenomena exhibit complicated steady states and numerous state transitions that remain interesting in applications. Examining these states by combining the effective methods of bifurcation theory and computational algebra is profoundly appreciable to obtain bifurcation points near which the qualitative behavior of the model varies and parameter ranges that promote particular behavior. This study reveals several essential characteristics of two biochemical reaction models that have not been detected before. Utilizing the Lyapunov function, we compute the general form of the first Lyapunov coefficient to determine Hopf bifurcation for the Brusselator model. Then, for the smallest three dimensional biochemical reaction model, we obtain a center manifold up to third-degree to study Hopf bifurcation in this system. We demonstrate all results by numerical simulation. Glycolysis, one of the leading metabolic pathways, involves many different periodic oscillations emerging at positive steady states of the biochemical models describing this essential process. One of the models employing the molecular diffusion of intermediates is the Higgins biochemical model to explain sustained oscillations. In this paper, we investigate the center-focus problem for the minimal Higgins model for general values of the model parameters with the help of computational algebra. We demonstrate that the model always has a stable focus point by finding a general form of the first Lyapunov coefficient. Then, varying two of the model parameters, we obtain the first three coefficients of the period function for the stable focus point of the model and prove that the singular point is actually a bi-weak monodromic equilibrium point of type [1,2]. Additionally, we prove that there are two (small) intervals for a chosen parameter for which one critical period bifurcates from this singular point after small perturbations.
Anahtar Kelime: Limit çevrimi kararlılık biyokimyasal modeller kritik periyotlar çatallanmalar

Erişim Türü: Bibliyografik
  • Alvarez-Vasquez, F., Sims, K.J., Cowart, L.A., Okamoto, Y., Voit, E.O., Hannun, Y. A. 2005. “Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae”, Nature, 433, 7024, 425-430.
  • Anguelov, R., Stoltz, S. M. 2017. “Stationary and oscillatory patterns in a coupled Brusselator model”, Mathematics and Computers in Simulation, 133, 39-46.
  • Arcet, B., Dolicanin Dekic, D., Macesic, S., Romanovski, V.G. 2020. “Limit cycles in the model of hypothalamic-pituitary-adrenal axis activity”, MATCH Communications in Mathematical and in Computer Chemistry, 83, 331-343.
  • Batt, G., Belta, C., Weiss, R. 2008. “Temporal Logic Analysis of Gene Networks under Parameter Uncertainty”, IEEE Transactions of Automatic Control, 53, 215–229.
  • Bautin, N. 1954. “On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type”, Transactions of the American Mathematical Society, 100, 397-413.
  • Bibikov, Y.N. 1979. Local Theory of Nonlinear Analytic Ordinary Differential Equations. New York: Springer.
  • Boa, J.A. 1974. A model biochemical reaction, Ph.D. thesis for California Institute of Technology.
  • Boros, B. 2008. Dynamic System Properties of Biochemical Reaction Systems, Thesis for the Master of Science degree in Applied Mathematics at Institute of Mathematics, Faculty of Science, Eötvös Loránd University, Budapest and thesis for the Master of Science degree in Mathematics at Department of Mathematics, Faculty of Science, VU University Amsterdam.
  • Boros, B., Hofbauer, J., Müller, S., Regensburger, G. 2018. “The center problem for the Lotka reactions with generalized mass-action kinetics”, Qualitative Theory of Dynamical Systems, 17, 403-410.
  • Brim, L., Fabrikova, J., Drazan, S., Safranek, D. 2011. “Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation”, Electronic Proceedings in Theoretical Computer Science, 67, 97-112.
  • Bruna, M., Chapman, S.J., Smith, M.J. 2014. “Model reduction for slow-fast stochastic systems with metastable behaviour”, Journal of Chemical Physics, 140, 17, 174107.
  • Caicedo-Casso, A., Kang, H.-W., Lim, S., Hong, C.I. 2015. “Robustness and period sensitivity analysis of minimal models for biochemical oscillators”, Scientific Reports, 5, 13161.
  • Chavarriga, J., Guinea, J. 1997. “Integrability of a linear center perturbed by a fifth degree homogeneous polynomial”, Publicacions Matematiques, 41, 335-356.
  • Chen, X., Gine, J., Romanovski, V.G., Shafer, D.S. 2012. “The 1: -q resonant center problem for certain cubic Lotka–Volterra systems”, Applied Mathematics and Computation, 218, 23, 11620–11633.
  • Chen, X., Huang, W., Romanovski, V.G., Zhang, W. 2013. “Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system”, Journal of Computational and Applied Mathematics, 245, 86–96.
  • Chicone, C., Jacobs, M. 1989. “Bifurcation of critical periods for plane vector fields”, Transactions of the American Mathematical Society, 312, 433-486.
  • Cox, D., Little, J., O'Shea, D. 2007. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, New York: Springer.
  • Dolicanin, D., Gine, J., Oliveira, R., Romanovski, V.G. 2013. “The center problem for a 2:-3 resonant cubic Lotka–Volterra system”, Applied Mathematics and Computation, 220, 12–19.
  • Dulac, H. 1908. “Determination et integration d’une certaine classe dequations differentielles ayant pour point singulier un centre”, Gauthier-Villars.
  • Feinberg, M. 1987. “Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems”, Chemical Engineering Science, 42, 2229-2268.
  • Feng, L., Jianlong, Q., Li, J. 2014. “Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems”, Nonlinear Dynamics, 76, 1, 183–197.
  • Fercec, B., Chen X., Romanovski, V.G. 2011. “Integrability conditions for complex systems with homogeneous quantic nonlinearities”, Journal of Applied Analysis and Computation, 1(1), 9–20.
  • Fercec, B., Dukaric, M., Aybar, O.O., Kusbeyzi Aybar, I. 2021. “Supercritical Hopf Bifurcations in Two Biochemical Reaction Systems”, MATCH Communications in Mathematical and in Computer Chemistry, 85, 3, 525-544.
  • Fercec, B., Levandovskyy, V., Romanovski, V.G., Shafer, D.S. 2015. “Bifurcation of critical periods of polynomial systems”, Journal of Differential Equations, 259, 3825-3853.
  • Fercec, B., Mahdi, A. 2013. “Center conditions and cyclicity for a family of cubic systems: Computer algebra approach”, Mathematics and Computers in Simulation, 87, 55-67.
  • Fercec, B., Mencinger, M., Petek, T., Aybar, O.O., Kusbeyzi Aybar, I. 2023. “Qualitative Analysis of the Minimal Higgins Model of Glycolysis”, MATCH Communications in Mathematical and in Computer Chemistry. (Kabul edildi)
  • Fife, P.C. 1979. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics. Berlin Heidelberg NewYork: Springer-Verlag. Fujii, T., Rondelez, Y. 2013. “Predator–prey molecular ecosystems”, ACS Nano, 7, 1, 27–34.
  • Gasull, A., Gine, J. 2010. “Cyclicity versus Center Problem”, Qualitative Theory of Dynamical Systems, 9, 1, 101-113.
  • Gine, J. 2012. “Higher order limit cycle bifurcations from non-degenerate centers”, Applied Mathematics and Computation, 218, 8853–8860.
  • Glandsdorff, P., Prigogine, I. 1971. Thermodynamics Theory of Structure Stability and Fluctuations, New York: Wiley.
  • Goriely, A., Robertson-Tessi, M., Tabor, M. 2008. Mathematical Modelling of Biosystems, Springer-Verlag Berlin Heidelberg.
  • Gyllenberg, M., Yan, P. 2009. “Four limit cycles for a three-dimensional competitive Lotka- Volterra system with a heteroclinic cycle”, Computers & Mathematics with Applications, 58, 4, 649–669.
  • Han, M., Romanovski, V.G. 2012. “Isochronicity and normal forms of polynomial systems of ODEs”, Journal of Symbolic Computation, 47, 10, 1163–1174.
  • Han, M., Romanovski, V.G. 2013. “On the number of limit cycles of polynomial Lienard systems”, Nonlinear Analysis: Real World Applications, 14, 3, 1655–1668.
  • He, D., Huang, W., Wang, Q. 2020. “Small amplitude limit cycles and local bifurcation of critical periods for a quartic Kolmogorov system”, Qualitative Theory of Dynamical Systems, 19, 68.
  • Higgins, J. 1964. “A chemical mechanism for oscillation of glycotic intermediates in yeast cells”, Proceedings of the National Academy of Sciences U.S.A., 51, 989-994.
  • Huang, Wt., Romanovski, V.G., Zhang, WN. 2013. “Weak centers and local bifurcations of critical periods at infinity for a class of rational systems”, Acta Mathematicae Applicatae Sinica, English Series, 29, 377-390.
  • Huang, Wt., Romanovski, V.G., Zhang, WN. 2018. “Bifurcation of critical periods of a quartic system”, Electronic Journal of Qualitative Theory of Differential Equations, 76, 1-18.
  • Ilyashenko, Y. 1991. “Finiteness Theorems for Limit Cycles”, Providence, RI: American Mathematical Society.
  • Ilyashenko, Y. 2002. “Centennial history of Hilbert’s 16th problem”, Bulletin (New Series) of the American Mathematical Society 39, 3, 301–354.
  • Ingalls, B.P. 2013. Mathematical Modeling in Systems Biology: An Introduction, Cambridge: The MIT Press.
  • Krambeck, F.J. 1970. “The mathematical structure of chemical kinetics in homogeneous single-phase systems”. Archive for Rational Mechanics and Analysis, 38, 5, 317–347.
  • Kusbeyzi Aybar, I., Aybar, O.O., Fercec, B., Romanovski, V. G., Swarup Samal, S., Weber, A. 2015. “Investigation of invariants of a chemical reaction system with algorithms of computer algebra”, MATCH Communications in Mathematical and in Computer Chemistry, 74, 465-480.
  • Kusbeyzi Aybar, I., Fercec, B., Aybar, O.O., Dukaric, M. 2021. “Limit Cycles of the Schnakenberg Chemical Reaction Model”. In: Skiadas, C.H., Dimotikalis, Y. (eds) 13th Chaotic Modeling and Simulation International Conference. CHAOS 2020. Springer Proceedings in Complexity. Cham: Springer.
  • Kuznetsov, Y. A. 1995. Elements of Applied Bifurcation Theory. New York: Springer. Laub, M.T., Loomis, W.F. 1998. “A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium”, Molecular Biology of the Cell, 9, 12, 3521-3532.
  • Li, J. 2003. “Hilbert’s 16th problem and bifurcations of planar polynomial vector fields”, International Journal of Bifurcation and Chaos, 13, 47-106.
  • Li, Y. 2016. “Hopf bifurcations in general systems of Brusselator type”, Nonlinear Analysis: Real World Applications, 28, 32-47.
  • Liapunov, A. M. 1992. “The general problem of the stability of motion”, International Journal of Control, 55, 3, 531-534.
  • Ling, G., Guan, Z.-H., Liao, R.-Q., Cheng, X.-M. 2015. “Stability and bifurcation analysis of cyclic genetic regulatory networks with mixed time delays”, SIAM Journal of Applied Dynamical Systems, 14, 1, 202–220.
  • Liu, L., Aybar, O.O., Romanovski, V.G., Zhang, W. 2015. “Identifying weak foci and centers in the Maxwell–Bloch system”, Journal of Mathematical Analysis and Applications, 430, 1, 549– 571.
  • Llibre, J., Romanovski, V.G. 2015. “Isochronicity and linearizability of planar polynomial Hamiltonian systems”, Journal Differential Equations, 259, 5, 1649–1662.
  • Llibre, J., Valls, C. 2009. “Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems”, Journal of Mathematical Analysis and Applications, 357, 2, 427-437.
  • Llibre, J., Valls, C. 2011. “Classification of the centers and their isochronicity for a class of polynomial differential systems of arbitrary degree”, Advances in Mathematics, 227, 1, 472- 493.
  • Llibre, J., Valls, C. 2012. “Liouvillian and analytic first integrals for the Brusselator system”, Journal of Nonlinear Mathematical Physics, 19, 2, 247-254.
  • Llibre, J., Valls, C. 2020. “Global qualitative dynamics of the Brusselator system”, Mathematics and Computers in Simulation, 170, 107-114.
  • Lloyd, N.G., Pearson, J.M. 1992. “Computing center condition for certain cubic systems”, Journal of Computational and Applied Mathematics, 40, 323-336.
  • Malkin, K.E. 1964. “Criteria for the center for a certain differential equation”, Volz. Mat. Sb. Vyp., 2, 87-91.
  • Mondaini, R.P., Pardaloc, P.M.(eds.) 2008. Mathematical Modelling of Biosystems. Berlin Heidelberg: Springer-Verlag.
  • Murray, J.D. 2003. Mathematical Biology II: Spatial Models and Biomedical Applications (Third Edition). New York: Springer.
  • Oliveria, R.D.S., Sanchez-Sanchez, I., Torregrosa, J. 2022. “Simultaneous bifurcation of limit cycles and critical periods”, Qualitative Theory of Dynamical Systems, 21, 20.
  • Pereira, J.A. 2005. “A biochemistry-inspired artificial chemistry: LAC”, 2005 Portuguese Conference on Artificial Intelligence, Proceedings, 79-84.
  • Perko, L. 2001. Differential Equations and Dynamical Systems. New York: Springer. Pliss, V.A. 1964. “A reduction principle in the theory of stability of motion”, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 28, 6, 1297-1324.
  • Poincare, H. 1951. “Memoire sur les courbes definies par une equation differentielle”, Gauthier-Villars.
  • Queeney, K.L., Marin, E.P., Campbell, C.M., Peacock-Lopez, E. 1996. “Chemical oscillations in enzyme kinetics”, The Chemical Educator, 1, 1-17.
  • Romanovski, V. G., Han, M., Macesic, S., Tang, Y. 2018. “Dynamics of an autocatalator model”, Mathematical Methods in the Applied Sciences, 41, 18, 9092-9102.
  • Romanovski, V.G., Han, M. 2003. “Critical period bifurcations of a cubic system”, Journal of Physics A: Mathematical and General, 36, 5011.
  • Romanovski, V.G., Han, M., Huang, W. 2018. “Bifurcation of critical periods of a quintic system”, Electronic Journal of Differential Equations, 66, 1-11.
  • Romanovski, V.G., Shafer, D. S. 2009. The Center and Cyclicity Problems, A Computational Algebra Approach. Boston: Birkhauser.
  • Roussarie, R. 1998. “Bifurcation of planar vector fields and Hilbert’s sixteenth problem”, Progress in Mathematics, 164, Birkhauser Verlag, Basel.
  • Rousseau, C., Toni, B. 1993. “Local bifurcation of critical periods in vector fields with homogeneous nonlinearities of the third degree”, Canadian Mathematical Bulletin, 36, 473- 484.
  • Roussel, M. R. 2001. “Invariant manifold methods for metabolic model reduction”, Chaos, 11, 1, 196-206.
  • Rubin, A.B. 2014. Fundamentals of Biophysics. New Jersey: Wiley.
  • Savageau, M.A. 1969. “Biochemical systems analysis: I. Some mathematical properties of the rate law for the component enzymatic reactions”, Journal of Theoretical Biology, 25, 3, 365- 369.
  • Savageau, M.A. 1976. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. MA: Addison–Wesley.
  • Savageau, M.A. 1998. “Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways”, Biosystems, 47, 9-36.
  • Shi, S. 1980. “A concrete example of the existence of four limit cycles for planar quadratic systems”, Scientia Sinica Series A, 23, 153-158.
  • Smith, H. L. 2012. “Global dynamics of the smallest chemical reaction system with Hopf bifurcation”, Journal of Mathematical Chemistry, 50, 989-995.
  • Surovtsova, I., Simus, N., Hübner, K., Sahle, S., Kummer, U. 2012. “Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics”, BMC Systems Biology, 6, 14.
  • Tholl, D., Sohrabi, R., Huh, J.-H., Lee, S. 2011. “The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets”, Phytochemistry, 72(13), 1635-1646.
  • Tyson, J.J., Novak, B., Odell, G.M., Chen, K., Thron, C.D. 1996. “Chemical kinetic theory: understanding cell-cycle regulation”, Trends in Biochemical Sciences, 21, 3, 89–96.
  • Vera, J., Balsa-Canto, E., Wellstead, P., Banga, J. R., Wolkenhauer, O. 2007. “Power-law models of signal transduction pathways”, Cell Signaling, 19, 7, 1531-1541.
  • Voit, E.O. 2000. Computational Analysis of Biochemical Systems. New York: Cambridge University Press.
  • Wang, H., Chen, B., Qiu, T., Zhao, J. 2015. “A New Biochemical Fermentation Process Design Method Considering Bifurcations and Oscillations”, Computer Aided Chemical Engineering, 36, 145-172.
  • Wei, M., Wu, J., Guo, G. 2015. “Steady state bifurcations for a glycolysis model in biochemical reaction”, Nonlinear Analysis: Real World Applications, 22, 155–175.
  • Weitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E., Simmel, F.C. 2014. “Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator”, Nature Chemistry, 6, 295–302.
  • Wilhelm, T. 2009. “The smallest chemical reaction system with bistability”, BMC Systems Biology, 3, 90.
  • Wilhelm, T., Heinrich, R. 1995. “Smallest chemical-reaction system with Hopf bifurcation”, Journal of Mathematical Chemistry, 17, 1, 1-14.
  • Wilhelm, T., Heinrich, R. 1996. “Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation”, Journal of Mathematical Chemistry, 19, 2, 111-130.
  • Wu, Y., Zhang, C., Li, P. 2010. “Isochronicity Problem of Higher-Order Singular Point for Polynomial Differential Systems”, Acta Applicandae Mathematicae, 110, 3, 1429–1448.
  • Xia, Y., Grasic, M., Huang, W., Romanovski, V.G. 2019. “Limit cycles in a model of olfactory sensory neurons”, International Journal of Bifurcation and Chaos, 29, 03, 1950038.
  • Xu, C., Wu, Y. 2015. “Bifurcation and control of chaos in a chemical system”, Applied Mathematical Modelling, 39, 2295–2310.
  • Zhang, W., Hou, X., Zenga, Z. 2000. “Weak centers and bifurcation of critical periods in reversible cubic systems”, Computers & Mathematics with Applications, 40, 771-782.
  • Zhou, Z., Romanovski, V.G. 2018. “The center problem and the composition condition for a family of quartic differential systems”, Electronic Journal of Differential Equations, 15, 1-17
APA Kusbeyzi Aybar I, Aybar O (2023). Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. , 0 - 58. 119F017
Chicago Kusbeyzi Aybar Ilknur,Aybar Orhan Ozgur Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. (2023): 0 - 58. 119F017
MLA Kusbeyzi Aybar Ilknur,Aybar Orhan Ozgur Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. , 2023, ss.0 - 58. 119F017
AMA Kusbeyzi Aybar I,Aybar O Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. . 2023; 0 - 58. 119F017
Vancouver Kusbeyzi Aybar I,Aybar O Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. . 2023; 0 - 58. 119F017
IEEE Kusbeyzi Aybar I,Aybar O "Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi." , ss.0 - 58, 2023. 119F017
ISNAD Kusbeyzi Aybar, Ilknur - Aybar, Orhan Ozgur. "Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi". (2023), 0-58. https://doi.org/119F017
APA Kusbeyzi Aybar I, Aybar O (2023). Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. , 0 - 58. 119F017
Chicago Kusbeyzi Aybar Ilknur,Aybar Orhan Ozgur Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. (2023): 0 - 58. 119F017
MLA Kusbeyzi Aybar Ilknur,Aybar Orhan Ozgur Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. , 2023, ss.0 - 58. 119F017
AMA Kusbeyzi Aybar I,Aybar O Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. . 2023; 0 - 58. 119F017
Vancouver Kusbeyzi Aybar I,Aybar O Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi. . 2023; 0 - 58. 119F017
IEEE Kusbeyzi Aybar I,Aybar O "Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi." , ss.0 - 58, 2023. 119F017
ISNAD Kusbeyzi Aybar, Ilknur - Aybar, Orhan Ozgur. "Hesaplamalı Cebir Yöntemleri Kullanılarak Biyokimyasal Sistemlerin Dinamik Analizi". (2023), 0-58. https://doi.org/119F017